《苏格兰书》对乌兰第19题的否定回答

IF 5.7 1区 数学 Q1 MATHEMATICS
D. Ryabogin
{"title":"《苏格兰书》对乌兰第19题的否定回答","authors":"D. Ryabogin","doi":"10.4007/annals.2022.195.3.5","DOIUrl":null,"url":null,"abstract":"We give a negative answer to Ulam's Problem 19 from the Scottish Book asking {\\it is a solid of uniform density which will float in water in every position a sphere?} Assuming that the density of water is $1$, we show that there exists a strictly convex body of revolution $K\\subset {\\mathbb R^3}$ of uniform density $\\frac{1}{2}$, which is not a Euclidean ball, yet floats in equilibrium in every orientation. We prove an analogous result in all dimensions $d\\ge 3$.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A negative answer to Ulam's Problem 19 from the Scottish Book\",\"authors\":\"D. Ryabogin\",\"doi\":\"10.4007/annals.2022.195.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a negative answer to Ulam's Problem 19 from the Scottish Book asking {\\\\it is a solid of uniform density which will float in water in every position a sphere?} Assuming that the density of water is $1$, we show that there exists a strictly convex body of revolution $K\\\\subset {\\\\mathbb R^3}$ of uniform density $\\\\frac{1}{2}$, which is not a Euclidean ball, yet floats in equilibrium in every orientation. We prove an analogous result in all dimensions $d\\\\ge 3$.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2022.195.3.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2022.195.3.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们对《苏格兰书》中的Ulam问题19给出了否定的答案,问{是一个均匀密度的固体,它在水中的每个位置都会漂浮在一个球体上?}假设水的密度是$1$,我们证明存在一个均匀密度$\frac{1}{2}$的严格凸旋转体$K\subet{\mathbb R^3}$,它不是欧几里得球,但在每个方向上都处于平衡状态。我们在所有维度$d\ge3$中证明了一个类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A negative answer to Ulam's Problem 19 from the Scottish Book
We give a negative answer to Ulam's Problem 19 from the Scottish Book asking {\it is a solid of uniform density which will float in water in every position a sphere?} Assuming that the density of water is $1$, we show that there exists a strictly convex body of revolution $K\subset {\mathbb R^3}$ of uniform density $\frac{1}{2}$, which is not a Euclidean ball, yet floats in equilibrium in every orientation. We prove an analogous result in all dimensions $d\ge 3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信