C. B. Cáceres, R. Hernández, Jedi Rosero-Alvarado, Rentry Augusti Nurbaity
{"title":"刀尖半径对环去巴克性能的影响","authors":"C. B. Cáceres, R. Hernández, Jedi Rosero-Alvarado, Rentry Augusti Nurbaity","doi":"10.22382/wfs-2022-16","DOIUrl":null,"url":null,"abstract":". The effects of the tool tip radius on debarking quality of unfrozen and frozen black spruce logs were studied. The power, energy consumption, and torque on frozen conditions were also studied. A prototype one-arm ring debarker was used. The experiment consisted of debarking logs using three tool tip radii (40, 180, and 300 m m) for each temperature ( 2 20 (cid:1) C and 1 20 (cid:1) C). The rotational and feed speeds, tip overlap, and rake angle were kept constants. Debarking quality was evaluated by two criteria: the proportion of bark remaining on log surfaces and the amount of wood in bark residues (WIB). Log characteristics, used as covariates, ie dimensions, eccentricity, bark thickness, knot features, bark/wood shear strength (BWSS), basic densities and moisture contents of sapwood and bark were measured, as well as total removed material after debarking. The results showed that tool tip radius had a signi fi cant effect on debarking quality of frozen and unfrozen logs. The proportion of bark on log surfaces increased and the amount of WIB decreased as tip radius increased. At the same applied radial force, a wider tip radius showed a shallower tip penetration leaving bigger regions of bark on the log surfaces. In contrast, a narrower tip radius showed a deeper tip penetration resulting in important wood fi ber tear-out. The bark thickness and inner bark MC also affected debarking quality. The mean power, mean torque, and energy consumption increased as the tip radius decreased. However, this effect will depend on the choice of the applied radial force during debarking. Motor performance was also affected by the total removed material, log diameter, and BWSS. Overall, the results highlight the importance of choosing an adequate combination of tool tip radius and applied radial force to obtain the most pro fi table debarking quality with an ef fi cient energy consumption.","PeriodicalId":23620,"journal":{"name":"Wood and Fiber Science","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Tool Tip Radius on ring Debarker Performance\",\"authors\":\"C. B. Cáceres, R. Hernández, Jedi Rosero-Alvarado, Rentry Augusti Nurbaity\",\"doi\":\"10.22382/wfs-2022-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The effects of the tool tip radius on debarking quality of unfrozen and frozen black spruce logs were studied. The power, energy consumption, and torque on frozen conditions were also studied. A prototype one-arm ring debarker was used. The experiment consisted of debarking logs using three tool tip radii (40, 180, and 300 m m) for each temperature ( 2 20 (cid:1) C and 1 20 (cid:1) C). The rotational and feed speeds, tip overlap, and rake angle were kept constants. Debarking quality was evaluated by two criteria: the proportion of bark remaining on log surfaces and the amount of wood in bark residues (WIB). Log characteristics, used as covariates, ie dimensions, eccentricity, bark thickness, knot features, bark/wood shear strength (BWSS), basic densities and moisture contents of sapwood and bark were measured, as well as total removed material after debarking. The results showed that tool tip radius had a signi fi cant effect on debarking quality of frozen and unfrozen logs. The proportion of bark on log surfaces increased and the amount of WIB decreased as tip radius increased. At the same applied radial force, a wider tip radius showed a shallower tip penetration leaving bigger regions of bark on the log surfaces. In contrast, a narrower tip radius showed a deeper tip penetration resulting in important wood fi ber tear-out. The bark thickness and inner bark MC also affected debarking quality. The mean power, mean torque, and energy consumption increased as the tip radius decreased. However, this effect will depend on the choice of the applied radial force during debarking. Motor performance was also affected by the total removed material, log diameter, and BWSS. Overall, the results highlight the importance of choosing an adequate combination of tool tip radius and applied radial force to obtain the most pro fi table debarking quality with an ef fi cient energy consumption.\",\"PeriodicalId\":23620,\"journal\":{\"name\":\"Wood and Fiber Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood and Fiber Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.22382/wfs-2022-16\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood and Fiber Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.22382/wfs-2022-16","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Effect of Tool Tip Radius on ring Debarker Performance
. The effects of the tool tip radius on debarking quality of unfrozen and frozen black spruce logs were studied. The power, energy consumption, and torque on frozen conditions were also studied. A prototype one-arm ring debarker was used. The experiment consisted of debarking logs using three tool tip radii (40, 180, and 300 m m) for each temperature ( 2 20 (cid:1) C and 1 20 (cid:1) C). The rotational and feed speeds, tip overlap, and rake angle were kept constants. Debarking quality was evaluated by two criteria: the proportion of bark remaining on log surfaces and the amount of wood in bark residues (WIB). Log characteristics, used as covariates, ie dimensions, eccentricity, bark thickness, knot features, bark/wood shear strength (BWSS), basic densities and moisture contents of sapwood and bark were measured, as well as total removed material after debarking. The results showed that tool tip radius had a signi fi cant effect on debarking quality of frozen and unfrozen logs. The proportion of bark on log surfaces increased and the amount of WIB decreased as tip radius increased. At the same applied radial force, a wider tip radius showed a shallower tip penetration leaving bigger regions of bark on the log surfaces. In contrast, a narrower tip radius showed a deeper tip penetration resulting in important wood fi ber tear-out. The bark thickness and inner bark MC also affected debarking quality. The mean power, mean torque, and energy consumption increased as the tip radius decreased. However, this effect will depend on the choice of the applied radial force during debarking. Motor performance was also affected by the total removed material, log diameter, and BWSS. Overall, the results highlight the importance of choosing an adequate combination of tool tip radius and applied radial force to obtain the most pro fi table debarking quality with an ef fi cient energy consumption.
期刊介绍:
W&FS SCIENTIFIC ARTICLES INCLUDE THESE TOPIC AREAS:
-Wood and Lignocellulosic Materials-
Biomaterials-
Timber Structures and Engineering-
Biology-
Nano-technology-
Natural Fiber Composites-
Timber Treatment and Harvesting-
Botany-
Mycology-
Adhesives and Bioresins-
Business Management and Marketing-
Operations Research.
SWST members have access to all full-text electronic versions of current and past Wood and Fiber Science issues.