回声状态网络全局参数的缩进缩出搜索算法

IF 1.7 Q2 Engineering
Guodong Wang, Mohamed Amin Ben Sassi, R. Grosu
{"title":"回声状态网络全局参数的缩进缩出搜索算法","authors":"Guodong Wang, Mohamed Amin Ben Sassi, R. Grosu","doi":"10.1109/CJECE.2017.2703093","DOIUrl":null,"url":null,"abstract":"Echo-state networks (ESNs) are a distinct architecture for recurrent neural networks (RNNs). The great advantage of ESN is that they offer an easy way to train the RNN. To make full use of ESN, one needs to first identify their global (hyper) parameters. These are input scaling, leaking rate (for leaky ESN), spectral radius, and the size of the ESN. The most recommended way to get their optimal (or suboptimal) values is by trial-and-error. However, in practice, this method has a very low efficiency. In order to tackle this problem, we propose a novel “zoom-in-zoom-out” (ZIZO) algorithm for generating the global parameters automatically. The proposed technique consists of two major parts. First, we generate random ranges for the parameters of ESNs. Then, based on bootstrap-sampling, we search the optimal solution within the fixed specific ranges. To evaluate the proposed method, we use two different data sets, which are collected from the literature. The obtained results demonstrate the efficiency and accuracy of ZIZO.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2017.2703093","citationCount":"2","resultStr":"{\"title\":\"ZIZO: A Novel Zoom-In–Zoom-Out Search Algorithm for the Global Parameters of Echo-State Networks\",\"authors\":\"Guodong Wang, Mohamed Amin Ben Sassi, R. Grosu\",\"doi\":\"10.1109/CJECE.2017.2703093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echo-state networks (ESNs) are a distinct architecture for recurrent neural networks (RNNs). The great advantage of ESN is that they offer an easy way to train the RNN. To make full use of ESN, one needs to first identify their global (hyper) parameters. These are input scaling, leaking rate (for leaky ESN), spectral radius, and the size of the ESN. The most recommended way to get their optimal (or suboptimal) values is by trial-and-error. However, in practice, this method has a very low efficiency. In order to tackle this problem, we propose a novel “zoom-in-zoom-out” (ZIZO) algorithm for generating the global parameters automatically. The proposed technique consists of two major parts. First, we generate random ranges for the parameters of ESNs. Then, based on bootstrap-sampling, we search the optimal solution within the fixed specific ranges. To evaluate the proposed method, we use two different data sets, which are collected from the literature. The obtained results demonstrate the efficiency and accuracy of ZIZO.\",\"PeriodicalId\":55287,\"journal\":{\"name\":\"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2017-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CJECE.2017.2703093\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CJECE.2017.2703093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2017.2703093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

回声状态网络(ESNs)是递归神经网络(rnn)的一种独特的结构。回声状态网络的巨大优势在于,它们提供了一种简单的方法来训练RNN。为了充分利用回声状态网络,首先需要确定其全局(超)参数。这些参数包括输入比例、泄漏率(对于泄漏ESN)、频谱半径和ESN的大小。获得最优(或次优)值的最推荐方法是通过试错法。但在实际应用中,这种方法的效率非常低。为了解决这个问题,我们提出了一种新的“放大放大缩小”(ZIZO)算法来自动生成全局参数。所提出的技术包括两个主要部分。首先,我们为esn的参数生成随机范围。然后,基于自举抽样,在固定的特定范围内搜索最优解。为了评估所提出的方法,我们使用了从文献中收集的两个不同的数据集。实验结果证明了ZIZO算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZIZO: A Novel Zoom-In–Zoom-Out Search Algorithm for the Global Parameters of Echo-State Networks
Echo-state networks (ESNs) are a distinct architecture for recurrent neural networks (RNNs). The great advantage of ESN is that they offer an easy way to train the RNN. To make full use of ESN, one needs to first identify their global (hyper) parameters. These are input scaling, leaking rate (for leaky ESN), spectral radius, and the size of the ESN. The most recommended way to get their optimal (or suboptimal) values is by trial-and-error. However, in practice, this method has a very low efficiency. In order to tackle this problem, we propose a novel “zoom-in-zoom-out” (ZIZO) algorithm for generating the global parameters automatically. The proposed technique consists of two major parts. First, we generate random ranges for the parameters of ESNs. Then, based on bootstrap-sampling, we search the optimal solution within the fixed specific ranges. To evaluate the proposed method, we use two different data sets, which are collected from the literature. The obtained results demonstrate the efficiency and accuracy of ZIZO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信