{"title":"磁效应下可拉伸渗透楔形表面的边界层纳米流体流动分析","authors":"M. Ali, R. Nasrin, M. Alim","doi":"10.3329/jname.v18i1.44458","DOIUrl":null,"url":null,"abstract":"The problem of steady two-dimensional boundary layer flow of momentum, heat and mass transfer over a stretching permeable wedge-shaped surface in a nanofluid in presence of magnetic field has been studied. In this respect, the governing partial differential equations have been converted into ordinary differential equations by using the local similarity transformation. The transformed governing equations have been then solved numerically using the bvp4c in MATLAB software. The effects of the pertinent parameters, namely wedge angle parameter (β), Brownian motion (Nb), thermophoresis (Nt), magnetic parameter (M), moving wedge parameter (λ), permeability parameter (K*), Prandtl number (Pr), and Lewis number (Le) on fluid velocity, thermal and concentration within the boundary layer have been analyzed. The numerical results obtained of the skin friction coefficients, local Nusselt number and local Sherwood number, as well as the velocity, temperature and concentration profiles have been presented graphically and also in tabular form. The results indicate that the momentum boundary layer thickness increases with increasing values of wedge angle and moving wedge but reduces for magnetic and permeability effects. The heat transfer rate increases for wedge angle, moving wedge, Brownian motion but decreases for thermoporesis and magnetic effects. The mass transfer rate decreases for Brownian motion and thermoporesis effects but increases for wedge angle and moving wedge parameters. Finally, the numerical results have been compared with previously published research and found to be in good agreement.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of boundary layer nanofluid flow over a stretching permeable wedge-shaped surface with magnetic effect\",\"authors\":\"M. Ali, R. Nasrin, M. Alim\",\"doi\":\"10.3329/jname.v18i1.44458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of steady two-dimensional boundary layer flow of momentum, heat and mass transfer over a stretching permeable wedge-shaped surface in a nanofluid in presence of magnetic field has been studied. In this respect, the governing partial differential equations have been converted into ordinary differential equations by using the local similarity transformation. The transformed governing equations have been then solved numerically using the bvp4c in MATLAB software. The effects of the pertinent parameters, namely wedge angle parameter (β), Brownian motion (Nb), thermophoresis (Nt), magnetic parameter (M), moving wedge parameter (λ), permeability parameter (K*), Prandtl number (Pr), and Lewis number (Le) on fluid velocity, thermal and concentration within the boundary layer have been analyzed. The numerical results obtained of the skin friction coefficients, local Nusselt number and local Sherwood number, as well as the velocity, temperature and concentration profiles have been presented graphically and also in tabular form. The results indicate that the momentum boundary layer thickness increases with increasing values of wedge angle and moving wedge but reduces for magnetic and permeability effects. The heat transfer rate increases for wedge angle, moving wedge, Brownian motion but decreases for thermoporesis and magnetic effects. The mass transfer rate decreases for Brownian motion and thermoporesis effects but increases for wedge angle and moving wedge parameters. Finally, the numerical results have been compared with previously published research and found to be in good agreement.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.44458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.44458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Analysis of boundary layer nanofluid flow over a stretching permeable wedge-shaped surface with magnetic effect
The problem of steady two-dimensional boundary layer flow of momentum, heat and mass transfer over a stretching permeable wedge-shaped surface in a nanofluid in presence of magnetic field has been studied. In this respect, the governing partial differential equations have been converted into ordinary differential equations by using the local similarity transformation. The transformed governing equations have been then solved numerically using the bvp4c in MATLAB software. The effects of the pertinent parameters, namely wedge angle parameter (β), Brownian motion (Nb), thermophoresis (Nt), magnetic parameter (M), moving wedge parameter (λ), permeability parameter (K*), Prandtl number (Pr), and Lewis number (Le) on fluid velocity, thermal and concentration within the boundary layer have been analyzed. The numerical results obtained of the skin friction coefficients, local Nusselt number and local Sherwood number, as well as the velocity, temperature and concentration profiles have been presented graphically and also in tabular form. The results indicate that the momentum boundary layer thickness increases with increasing values of wedge angle and moving wedge but reduces for magnetic and permeability effects. The heat transfer rate increases for wedge angle, moving wedge, Brownian motion but decreases for thermoporesis and magnetic effects. The mass transfer rate decreases for Brownian motion and thermoporesis effects but increases for wedge angle and moving wedge parameters. Finally, the numerical results have been compared with previously published research and found to be in good agreement.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.