具有无限多个非特征斜率的结

IF 0.4 4区 数学 Q4 MATHEMATICS
Tetsuya Abe, Keiji Tagami
{"title":"具有无限多个非特征斜率的结","authors":"Tetsuya Abe, Keiji Tagami","doi":"10.2996/kmj/kmj44301","DOIUrl":null,"url":null,"abstract":"Using the techniques on annulus twists, we observe that $6_3$ has infinitely many non-characterizing slopes, which affirmatively answers a question by Baker and Motegi. Furthermore, we prove that the knots $6_2$, $6_3$, $7_6$, $7_7$, $8_1$, $8_3$, $8_4$, $8_6$, $8_7$, $8_9$, $8_{10}$, $8_{11}$, $8_{12}$, $8_{13}$, $8_{14}$, $8_{17}$,$8_{20}$ and $8_{21}$ have infinitely many non-characterizing slopes. We also introduce the notion of trivial annulus twists and give some possible applications. Finally, we completely determine which knots have special annulus presentations up to 8-crossings.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Knots with infinitely many non-characterizing slopes\",\"authors\":\"Tetsuya Abe, Keiji Tagami\",\"doi\":\"10.2996/kmj/kmj44301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the techniques on annulus twists, we observe that $6_3$ has infinitely many non-characterizing slopes, which affirmatively answers a question by Baker and Motegi. Furthermore, we prove that the knots $6_2$, $6_3$, $7_6$, $7_7$, $8_1$, $8_3$, $8_4$, $8_6$, $8_7$, $8_9$, $8_{10}$, $8_{11}$, $8_{12}$, $8_{13}$, $8_{14}$, $8_{17}$,$8_{20}$ and $8_{21}$ have infinitely many non-characterizing slopes. We also introduce the notion of trivial annulus twists and give some possible applications. Finally, we completely determine which knots have special annulus presentations up to 8-crossings.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/kmj44301\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/kmj44301","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

利用环面扭转技术,我们观察到$6_3$有无限多个非特征斜率,这肯定地回答了Baker和Motegi的一个问题。此外,我们还证明了结$6_2$、$6_3$、$7_6$、$7_7$、$8_1$、$8%_3$、8_4$、$8k$、$8c$、$8d_9$、$9_{10}、$8_{11}$、$10_{12}$、8_{13}$、$S8_{14}$、$08_{17}$、#8_{20}$和$8_{21}$具有无限多个非特征斜率。我们还引入了平凡环面扭曲的概念,并给出了一些可能的应用。最后,我们完全确定哪些节点具有特殊的环空表现,最多可达8个交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knots with infinitely many non-characterizing slopes
Using the techniques on annulus twists, we observe that $6_3$ has infinitely many non-characterizing slopes, which affirmatively answers a question by Baker and Motegi. Furthermore, we prove that the knots $6_2$, $6_3$, $7_6$, $7_7$, $8_1$, $8_3$, $8_4$, $8_6$, $8_7$, $8_9$, $8_{10}$, $8_{11}$, $8_{12}$, $8_{13}$, $8_{14}$, $8_{17}$,$8_{20}$ and $8_{21}$ have infinitely many non-characterizing slopes. We also introduce the notion of trivial annulus twists and give some possible applications. Finally, we completely determine which knots have special annulus presentations up to 8-crossings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信