三次n流形的任意顶点的组合描述

Q4 Mathematics
Gabriela Hinojosa, R. Valdez
{"title":"三次n流形的任意顶点的组合描述","authors":"Gabriela Hinojosa, R. Valdez","doi":"10.15446/recolma.v55n2.102509","DOIUrl":null,"url":null,"abstract":"We say that a topological space N is a cubical n-manifold if it is a topological manifold of dimension n contained in the n-skeleton of the canonical cubulation of Rn+2. For instance, any smooth n-knot Sn → Rn+2 can be deformed by an ambient isotopy into a cubical n-knot. An open question is the following: Is any closed, oriented, cubical n-manifold N in Rn+2, n > 2, smoothable? If the response is positive, we could give a discrete description of any smooth n-manifold; in particular, if we can stablish that for smooth n-knots, that fact can be useful to define invariants. One of the main dificulties to answer the above question lies in the understanding of how N looks at each vertex of the canonical cubulation. In this paper, we analyze all possible combinatorial behaviors around any vertex of any cubical manifold of dimension n, via the study of the cycles on the complete graph K2n.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial description around any vertex of a cubical n-manifold\",\"authors\":\"Gabriela Hinojosa, R. Valdez\",\"doi\":\"10.15446/recolma.v55n2.102509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a topological space N is a cubical n-manifold if it is a topological manifold of dimension n contained in the n-skeleton of the canonical cubulation of Rn+2. For instance, any smooth n-knot Sn → Rn+2 can be deformed by an ambient isotopy into a cubical n-knot. An open question is the following: Is any closed, oriented, cubical n-manifold N in Rn+2, n > 2, smoothable? If the response is positive, we could give a discrete description of any smooth n-manifold; in particular, if we can stablish that for smooth n-knots, that fact can be useful to define invariants. One of the main dificulties to answer the above question lies in the understanding of how N looks at each vertex of the canonical cubulation. In this paper, we analyze all possible combinatorial behaviors around any vertex of any cubical manifold of dimension n, via the study of the cycles on the complete graph K2n.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v55n2.102509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v55n2.102509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果拓扑空间N是包含在Rn+2的正则立方的N-骨架中的维数为N的拓扑流形,则我们说它是立方N-流形。例如,任何光滑的n结Sn→ Rn+2可以通过环境各向同性变形为立方n结。一个开放的问题是:Rn+2,n>2中的任何闭的、有向的、立方的n-流形n都是可光滑的吗?如果响应是正的,我们可以给出任何光滑n-流形的离散描述;特别是,如果我们能够为光滑的n节点建立这一点,那么这一事实对于定义不变量是有用的。回答上述问题的主要困难之一在于理解N如何看待正则立方的每个顶点。本文通过对完备图K2n上的循环的研究,分析了n维三次流形任意顶点周围所有可能的组合行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial description around any vertex of a cubical n-manifold
We say that a topological space N is a cubical n-manifold if it is a topological manifold of dimension n contained in the n-skeleton of the canonical cubulation of Rn+2. For instance, any smooth n-knot Sn → Rn+2 can be deformed by an ambient isotopy into a cubical n-knot. An open question is the following: Is any closed, oriented, cubical n-manifold N in Rn+2, n > 2, smoothable? If the response is positive, we could give a discrete description of any smooth n-manifold; in particular, if we can stablish that for smooth n-knots, that fact can be useful to define invariants. One of the main dificulties to answer the above question lies in the understanding of how N looks at each vertex of the canonical cubulation. In this paper, we analyze all possible combinatorial behaviors around any vertex of any cubical manifold of dimension n, via the study of the cycles on the complete graph K2n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信