组分区类别

IF 0.6 2区 数学 Q3 MATHEMATICS
Samuel Nyobe Likeng, Alistair Savage
{"title":"组分区类别","authors":"Samuel Nyobe Likeng, Alistair Savage","doi":"10.4171/JCA/55","DOIUrl":null,"url":null,"abstract":"To every group $G$ we associate a linear monoidal category $\\mathcal{P}\\mathit{ar}(G)$ that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of $\\mathcal{P}\\mathit{ar}(G)$ into the group Heisenberg category associated to $G$. This embedding intertwines the natural actions of both categories on modules for wreath products of $G$. Finally, we prove that the additive Karoubi envelope of $\\mathcal{P}\\mathit{ar}(G)$ is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Group partition categories\",\"authors\":\"Samuel Nyobe Likeng, Alistair Savage\",\"doi\":\"10.4171/JCA/55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To every group $G$ we associate a linear monoidal category $\\\\mathcal{P}\\\\mathit{ar}(G)$ that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of $\\\\mathcal{P}\\\\mathit{ar}(G)$ into the group Heisenberg category associated to $G$. This embedding intertwines the natural actions of both categories on modules for wreath products of $G$. Finally, we prove that the additive Karoubi envelope of $\\\\mathcal{P}\\\\mathit{ar}(G)$ is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/55\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/55","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于每个群$G$,我们关联一个线性单oid范畴$\mathcal{P}\mathit{ar}(G)$,我们称之为群分区范畴。我们给出了态射空间的显式基,并用生成元和关系给出了范畴的有效表示。然后,我们定义了$\mathcal{P}\mathit{ar}(G)$嵌入到与$G$相关的群Heisenberg范畴中。这种嵌入将两个类别在$G$的花环产品的模块上的自然作用交织在一起。最后,我们证明了$\mathcal{P}\mathit{ar}(G)$的加性Karoubi包络等价于Knop引入的环积插值范畴,从而给出了该范畴的简单具体描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group partition categories
To every group $G$ we associate a linear monoidal category $\mathcal{P}\mathit{ar}(G)$ that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of $\mathcal{P}\mathit{ar}(G)$ into the group Heisenberg category associated to $G$. This embedding intertwines the natural actions of both categories on modules for wreath products of $G$. Finally, we prove that the additive Karoubi envelope of $\mathcal{P}\mathit{ar}(G)$ is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信