闭厄米流形上退化k-Hessian方程的正则性

IF 2.1 2区 数学 Q1 MATHEMATICS
Dekai Zhang
{"title":"闭厄米流形上退化k-Hessian方程的正则性","authors":"Dekai Zhang","doi":"10.1515/ans-2022-0025","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with the existence of weak C 1 , 1 {C}^{1,1} solution of the k k -Hessian equation on a closed Hermitian manifold under the optimal assumption of the function in the right-hand side of the equation. The key points are to show the weak C 1 , 1 {C}^{1,1} estimates. We prove a Cherrier-type inequality to obtain the C 0 {C}^{0} estimate, and the complex Hessian estimate is proved by using an auxiliary function, which was motivated by Hou et al. and Tosatti and Weinkove. Our result generalizes the Kähler case proved by Dinew et al.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"534 - 547"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of degenerate k-Hessian equations on closed Hermitian manifolds\",\"authors\":\"Dekai Zhang\",\"doi\":\"10.1515/ans-2022-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are concerned with the existence of weak C 1 , 1 {C}^{1,1} solution of the k k -Hessian equation on a closed Hermitian manifold under the optimal assumption of the function in the right-hand side of the equation. The key points are to show the weak C 1 , 1 {C}^{1,1} estimates. We prove a Cherrier-type inequality to obtain the C 0 {C}^{0} estimate, and the complex Hessian estimate is proved by using an auxiliary function, which was motivated by Hou et al. and Tosatti and Weinkove. Our result generalizes the Kähler case proved by Dinew et al.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"534 - 547\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0025\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0025","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了k k -Hessian方程在封闭厄米流形上,在方程右侧函数的最优假设下,弱c1,1 {C}^{1,1}解的存在性。关键是要显示弱c1,1 {C}^{1,1}估计。我们证明了cherrier型不等式,得到了c0 {C}^{0}估计,并利用辅助函数证明了复Hessian估计,该辅助函数由Hou等人以及Tosatti和Weinkove提出。我们的结果推广了Dinew等人证明的Kähler情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of degenerate k-Hessian equations on closed Hermitian manifolds
Abstract In this article, we are concerned with the existence of weak C 1 , 1 {C}^{1,1} solution of the k k -Hessian equation on a closed Hermitian manifold under the optimal assumption of the function in the right-hand side of the equation. The key points are to show the weak C 1 , 1 {C}^{1,1} estimates. We prove a Cherrier-type inequality to obtain the C 0 {C}^{0} estimate, and the complex Hessian estimate is proved by using an auxiliary function, which was motivated by Hou et al. and Tosatti and Weinkove. Our result generalizes the Kähler case proved by Dinew et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信