谷氨酸脱氢酶合成总RNA的结构特性研究

G. Osuji, Paul M Johnson
{"title":"谷氨酸脱氢酶合成总RNA的结构特性研究","authors":"G. Osuji, Paul M Johnson","doi":"10.4236/AER.2018.63004","DOIUrl":null,"url":null,"abstract":"Glutamate dehydrogenase (GDH)-synthesized RNA, a nongenetic code-based RNA is suitable for unraveling the structural constraints imposed on the regulation (transcription, translation, siRNA etc.) of metabolism by genetic code. GDH-synthesized RNAs have been induced in whole plants to knock out target mRNA populations thereby producing plant phenotypes that are allergen-free; enriched in fatty acids, essential amino acids, shikimic acid, resveratrol etc. Methods applied hereunder for investigating the structural properties of GDH-synthesized RNA included purification of GDH isoenzymes, synthesis of RNA by the isoenzymes, reverse transcription of the RNA to cDNA, sequencing of the cDNA, computation of the G+C-contents, profiling the stability through PCR amplification compared with genetic code-based DNA; and biochemical characterization of the RNAs synthesized by individual hexameric isoenzymes of GDH. Single product bands resulted from the PCR amplification of the cDNAs of GDH-synthesized RNA, whereas several bands resulted from the amplification of genetic code-based DNA. The cDNAs have wide G+C-contents (35% to 59%), whereas genetic code-based DNA has narrower G+C-contents (50% to 60%). The GDH β6 homo-hexameric isoenzyme synthesized the A+U-rich RNAs, whereas the a6, and α6 homo-hexameric isoenzymes synthesized the G+C-rich RNAs. Therefore, the RNA synthesized by GDH is different from genetic code-based RNAs. In vitro chemical reactions revealed that GDH-synthesized RNA degraded total RNA to lower molecular weight products. Therefore, GDH-synthesized RNA is RNA enzyme. Dismantling of the structural constraints imposed on RNA by genetic code liberated RNA to become an enzyme with specificity to degrade unwanted transcripts. The RNA enzyme activity of GDH-synthesized RNA is ubiquitous in cells; it is readily induced by treatment of plants with mineral nutrients etc. and may simplify experimental approaches in plant enzymology and molecular biology research projects.","PeriodicalId":65616,"journal":{"name":"酶研究进展(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural Properties of the RNA Synthesized by Glutamate Dehydrogenase for the Degradation of Total RNA\",\"authors\":\"G. Osuji, Paul M Johnson\",\"doi\":\"10.4236/AER.2018.63004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glutamate dehydrogenase (GDH)-synthesized RNA, a nongenetic code-based RNA is suitable for unraveling the structural constraints imposed on the regulation (transcription, translation, siRNA etc.) of metabolism by genetic code. GDH-synthesized RNAs have been induced in whole plants to knock out target mRNA populations thereby producing plant phenotypes that are allergen-free; enriched in fatty acids, essential amino acids, shikimic acid, resveratrol etc. Methods applied hereunder for investigating the structural properties of GDH-synthesized RNA included purification of GDH isoenzymes, synthesis of RNA by the isoenzymes, reverse transcription of the RNA to cDNA, sequencing of the cDNA, computation of the G+C-contents, profiling the stability through PCR amplification compared with genetic code-based DNA; and biochemical characterization of the RNAs synthesized by individual hexameric isoenzymes of GDH. Single product bands resulted from the PCR amplification of the cDNAs of GDH-synthesized RNA, whereas several bands resulted from the amplification of genetic code-based DNA. The cDNAs have wide G+C-contents (35% to 59%), whereas genetic code-based DNA has narrower G+C-contents (50% to 60%). The GDH β6 homo-hexameric isoenzyme synthesized the A+U-rich RNAs, whereas the a6, and α6 homo-hexameric isoenzymes synthesized the G+C-rich RNAs. Therefore, the RNA synthesized by GDH is different from genetic code-based RNAs. In vitro chemical reactions revealed that GDH-synthesized RNA degraded total RNA to lower molecular weight products. Therefore, GDH-synthesized RNA is RNA enzyme. Dismantling of the structural constraints imposed on RNA by genetic code liberated RNA to become an enzyme with specificity to degrade unwanted transcripts. The RNA enzyme activity of GDH-synthesized RNA is ubiquitous in cells; it is readily induced by treatment of plants with mineral nutrients etc. and may simplify experimental approaches in plant enzymology and molecular biology research projects.\",\"PeriodicalId\":65616,\"journal\":{\"name\":\"酶研究进展(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"酶研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/AER.2018.63004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"酶研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AER.2018.63004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

谷氨酸脱氢酶(Glutamate dehydrogenase, GDH)合成的RNA是一种非遗传密码合成的RNA,适用于揭示遗传密码对代谢调控(转录、翻译、siRNA等)的结构约束。已在整株植物中诱导gdh合成的rna敲除目标mRNA群体,从而产生无过敏原的植物表型;富含脂肪酸、必需氨基酸、莽草酸、白藜芦醇等。本文研究GDH合成的RNA结构特性的方法包括:纯化GDH同工酶,由同工酶合成RNA,将RNA反转录为cDNA,对cDNA进行测序,计算G+ c含量,通过PCR扩增与遗传密码DNA进行稳定性分析;GDH各六聚体同工酶合成的rna的生化特性。单个产物带是由gdh合成的RNA的cdna的PCR扩增产生的,而多个产物带是由基于遗传密码的DNA的扩增产生的。DNA的G+ c含量较宽(35%至59%),而基于遗传密码的DNA的G+ c含量较窄(50%至60%)。GDH β6同型六聚体同工酶合成了富含A+ u的rna,而a6和α6同型六聚体同工酶合成了富含G+ c的rna。因此,GDH合成的RNA不同于基于遗传密码的RNA。体外化学反应表明,gdh合成的RNA将总RNA降解为分子量较低的产物。因此,gdh合成的RNA是RNA酶。拆除遗传密码对RNA施加的结构限制,使RNA成为一种特异性降解不需要的转录物的酶。gdh合成RNA的RNA酶活性在细胞中普遍存在;它可以通过植物的矿质营养物质等处理来诱导,可以简化植物酶学和分子生物学研究项目的实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Properties of the RNA Synthesized by Glutamate Dehydrogenase for the Degradation of Total RNA
Glutamate dehydrogenase (GDH)-synthesized RNA, a nongenetic code-based RNA is suitable for unraveling the structural constraints imposed on the regulation (transcription, translation, siRNA etc.) of metabolism by genetic code. GDH-synthesized RNAs have been induced in whole plants to knock out target mRNA populations thereby producing plant phenotypes that are allergen-free; enriched in fatty acids, essential amino acids, shikimic acid, resveratrol etc. Methods applied hereunder for investigating the structural properties of GDH-synthesized RNA included purification of GDH isoenzymes, synthesis of RNA by the isoenzymes, reverse transcription of the RNA to cDNA, sequencing of the cDNA, computation of the G+C-contents, profiling the stability through PCR amplification compared with genetic code-based DNA; and biochemical characterization of the RNAs synthesized by individual hexameric isoenzymes of GDH. Single product bands resulted from the PCR amplification of the cDNAs of GDH-synthesized RNA, whereas several bands resulted from the amplification of genetic code-based DNA. The cDNAs have wide G+C-contents (35% to 59%), whereas genetic code-based DNA has narrower G+C-contents (50% to 60%). The GDH β6 homo-hexameric isoenzyme synthesized the A+U-rich RNAs, whereas the a6, and α6 homo-hexameric isoenzymes synthesized the G+C-rich RNAs. Therefore, the RNA synthesized by GDH is different from genetic code-based RNAs. In vitro chemical reactions revealed that GDH-synthesized RNA degraded total RNA to lower molecular weight products. Therefore, GDH-synthesized RNA is RNA enzyme. Dismantling of the structural constraints imposed on RNA by genetic code liberated RNA to become an enzyme with specificity to degrade unwanted transcripts. The RNA enzyme activity of GDH-synthesized RNA is ubiquitous in cells; it is readily induced by treatment of plants with mineral nutrients etc. and may simplify experimental approaches in plant enzymology and molecular biology research projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信