基于压缩感知的LS和MMSE信道估计算法性能分析

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. Munshi, S. Unnikrishnan
{"title":"基于压缩感知的LS和MMSE信道估计算法性能分析","authors":"A. Munshi, S. Unnikrishnan","doi":"10.24138/JCOMSS.V17I1.1084","DOIUrl":null,"url":null,"abstract":"In this paper, the optimality of Compressive Sensing based Least Square (LS-CS) and Compressive Sensing based Minimum Mean Square (MMSE-CS) channel estimation algorithms in Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system is investigated for a sparse communication channel. The performance of LS, MMSE, LS-CS and MMSE-CS channel estimation algorithms in terms of sparsity of the channel, compressive sensing and mathematical complexity is investigated and analyzed so that optimum ranges can be recommended.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"17 1","pages":"13-19"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm\",\"authors\":\"A. Munshi, S. Unnikrishnan\",\"doi\":\"10.24138/JCOMSS.V17I1.1084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the optimality of Compressive Sensing based Least Square (LS-CS) and Compressive Sensing based Minimum Mean Square (MMSE-CS) channel estimation algorithms in Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system is investigated for a sparse communication channel. The performance of LS, MMSE, LS-CS and MMSE-CS channel estimation algorithms in terms of sparsity of the channel, compressive sensing and mathematical complexity is investigated and analyzed so that optimum ranges can be recommended.\",\"PeriodicalId\":38910,\"journal\":{\"name\":\"Journal of Communications Software and Systems\",\"volume\":\"17 1\",\"pages\":\"13-19\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications Software and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24138/JCOMSS.V17I1.1084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/JCOMSS.V17I1.1084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

摘要

针对稀疏通信信道,研究了多输入多输出(MIMO)正交频分复用(OFDM)系统中基于压缩感知的最小二乘(LS-CS)和基于压缩感知的最小均方(MMSE-CS)信道估计算法的最优性。对LS、MMSE、LS- cs和MMSE- cs信道估计算法在信道稀疏度、压缩感知和数学复杂度方面的性能进行了研究和分析,从而提出了最佳范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm
In this paper, the optimality of Compressive Sensing based Least Square (LS-CS) and Compressive Sensing based Minimum Mean Square (MMSE-CS) channel estimation algorithms in Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system is investigated for a sparse communication channel. The performance of LS, MMSE, LS-CS and MMSE-CS channel estimation algorithms in terms of sparsity of the channel, compressive sensing and mathematical complexity is investigated and analyzed so that optimum ranges can be recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信