关于Tonelli的一个定理的注记

Q4 Mathematics
W. Wilczyński
{"title":"关于Tonelli的一个定理的注记","authors":"W. Wilczyński","doi":"10.2478/tmmp-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that if the surface f : [−1, 1] × [−1, 1] → ℝ has a finite area, then the total variations of both sections fx(y)= f (x, y)and f y(x) = f (x, y)of f are finite almost everywhere in [−1, 1]. In the note it is proved that these variations can be infinite on residual subsets of [−1, 1].","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"81 1","pages":"89 - 92"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remark on a Theorem of Tonelli\",\"authors\":\"W. Wilczyński\",\"doi\":\"10.2478/tmmp-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that if the surface f : [−1, 1] × [−1, 1] → ℝ has a finite area, then the total variations of both sections fx(y)= f (x, y)and f y(x) = f (x, y)of f are finite almost everywhere in [−1, 1]. In the note it is proved that these variations can be infinite on residual subsets of [−1, 1].\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"81 1\",\"pages\":\"89 - 92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要众所周知,如果曲面f:[−1,1]x[−1,1]→∈有一个有限的面积,那么f的两个截面fx(y)= f (x, y)和f (x) = f (x, y)在[−1,1]内几乎处处都是有限的。在注释中证明了这些变化在[−1,1]的残差子集上是无限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remark on a Theorem of Tonelli
Abstract It is well known that if the surface f : [−1, 1] × [−1, 1] → ℝ has a finite area, then the total variations of both sections fx(y)= f (x, y)and f y(x) = f (x, y)of f are finite almost everywhere in [−1, 1]. In the note it is proved that these variations can be infinite on residual subsets of [−1, 1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信