晴空条件下气溶胶对全球和直接辐照衰减影响的评估:以摩洛哥为例

IF 2.1 Q3 ENVIRONMENTAL SCIENCES
Omaima El Alani, Mounir Abraim, H. Ghennioui, A. Ghennioui, A. Azouzoute
{"title":"晴空条件下气溶胶对全球和直接辐照衰减影响的评估:以摩洛哥为例","authors":"Omaima El Alani, Mounir Abraim, H. Ghennioui, A. Ghennioui, A. Azouzoute","doi":"10.13044/j.sdewes.d10.0433","DOIUrl":null,"url":null,"abstract":"Solar energy is a promising alternative for reducing the consumption of fossil fuels. However, solar potential depends on several atmospheric parameters. When no clouds are present, aerosols are the primary source of solar radiation attenuation. This study examines the impact of aerosol optical depth on the attenuation of solar irradiance under clear sky conditions. For this purpose, aerosol data from satellite databases and irradiance data from high-performance meteorological stations installed in two sites in Morocco were exploited. Under clear sky conditions, the results showed a decrease in global horizontal irradiance relative to the global irradiance at the top of the atmosphere of 24% for aerosol optical depth values of 0.02 and exceeding 53% for 0.6. Aerosols have a more significant impact on the direct normal irradiance under clear sky conditions; over the test data, a decrease of 66% was observed for the direct normal irradiance according to the extraterrestrial irradiance for aerosol optical depth of 0.2 and reaching 92% for 0.6.","PeriodicalId":46202,"journal":{"name":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of Aerosols Impact on global and direct irradiance attenuation under clear sky condition: A case study in Morocco\",\"authors\":\"Omaima El Alani, Mounir Abraim, H. Ghennioui, A. Ghennioui, A. Azouzoute\",\"doi\":\"10.13044/j.sdewes.d10.0433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is a promising alternative for reducing the consumption of fossil fuels. However, solar potential depends on several atmospheric parameters. When no clouds are present, aerosols are the primary source of solar radiation attenuation. This study examines the impact of aerosol optical depth on the attenuation of solar irradiance under clear sky conditions. For this purpose, aerosol data from satellite databases and irradiance data from high-performance meteorological stations installed in two sites in Morocco were exploited. Under clear sky conditions, the results showed a decrease in global horizontal irradiance relative to the global irradiance at the top of the atmosphere of 24% for aerosol optical depth values of 0.02 and exceeding 53% for 0.6. Aerosols have a more significant impact on the direct normal irradiance under clear sky conditions; over the test data, a decrease of 66% was observed for the direct normal irradiance according to the extraterrestrial irradiance for aerosol optical depth of 0.2 and reaching 92% for 0.6.\",\"PeriodicalId\":46202,\"journal\":{\"name\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13044/j.sdewes.d10.0433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13044/j.sdewes.d10.0433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

太阳能是减少化石燃料消耗的一种很有前途的替代能源。然而,太阳能潜力取决于几个大气参数。当没有云存在时,气溶胶是太阳辐射衰减的主要来源。本研究考察了晴空条件下气溶胶光学深度对太阳辐照度衰减的影响。为此目的,利用了来自卫星数据库的气溶胶数据和安装在摩洛哥两个站点的高性能气象站的辐照度数据。结果表明,在晴空条件下,气溶胶光学深度为0.02时,全球水平辐照度相对于大气顶部的全球辐照度减少24%,0.6时超过53%。在晴空条件下,气溶胶对直接正常辐照度的影响更为显著;在测试数据中,根据地外辐照度,气溶胶光学深度为0.2时,直接正常辐照度下降66%,0.6时达到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Aerosols Impact on global and direct irradiance attenuation under clear sky condition: A case study in Morocco
Solar energy is a promising alternative for reducing the consumption of fossil fuels. However, solar potential depends on several atmospheric parameters. When no clouds are present, aerosols are the primary source of solar radiation attenuation. This study examines the impact of aerosol optical depth on the attenuation of solar irradiance under clear sky conditions. For this purpose, aerosol data from satellite databases and irradiance data from high-performance meteorological stations installed in two sites in Morocco were exploited. Under clear sky conditions, the results showed a decrease in global horizontal irradiance relative to the global irradiance at the top of the atmosphere of 24% for aerosol optical depth values of 0.02 and exceeding 53% for 0.6. Aerosols have a more significant impact on the direct normal irradiance under clear sky conditions; over the test data, a decrease of 66% was observed for the direct normal irradiance according to the extraterrestrial irradiance for aerosol optical depth of 0.2 and reaching 92% for 0.6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
9.50%
发文量
59
审稿时长
20 weeks
期刊介绍: The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信