Didem Ketenoglu, E. Bostanci, A. Aydin, B. Ketenoglu
{"title":"硬x射线自放大自发发射自由电子激光优化使用进化算法的专用用户应用","authors":"Didem Ketenoglu, E. Bostanci, A. Aydin, B. Ketenoglu","doi":"10.3906/fiz-1909-5","DOIUrl":null,"url":null,"abstract":"Accelerator-based fourth-generation light sources are utilized in a wide range of interdisciplinary applications such as nanotechnology, materials science, biosciences, and medicine. A hard X-ray free-electron laser (FEL), as a state-of-the-art light source, was optimized using evolutionary algorithms for dedicated user applications such as X-ray Raman scattering (XRS), resonant inelastic X-ray scattering (RIXS), and X-ray emission spectroscopies (XES). Optimal parameter sets were obtained for an in-vacuum planar undulator driven by an 8 GeV electron beam. Performance parameters of self-amplified spontaneous emission (SASE) operation (i.e. optimized SASE performance parameters through evolutionary algorithms) were found to be consistent with operating X-ray FEL facilities around the world. It is shown that FEL characteristics for specific user experiments can be optimized by finding several evolutionary algorithm solutions within the range of 5 keV to 10 keV.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":"43 1","pages":"551-555"},"PeriodicalIF":1.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hard X-ray self-amplified spontaneous emission free-electron laser optimizationusing evolutionary algorithms for dedicated user applications\",\"authors\":\"Didem Ketenoglu, E. Bostanci, A. Aydin, B. Ketenoglu\",\"doi\":\"10.3906/fiz-1909-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerator-based fourth-generation light sources are utilized in a wide range of interdisciplinary applications such as nanotechnology, materials science, biosciences, and medicine. A hard X-ray free-electron laser (FEL), as a state-of-the-art light source, was optimized using evolutionary algorithms for dedicated user applications such as X-ray Raman scattering (XRS), resonant inelastic X-ray scattering (RIXS), and X-ray emission spectroscopies (XES). Optimal parameter sets were obtained for an in-vacuum planar undulator driven by an 8 GeV electron beam. Performance parameters of self-amplified spontaneous emission (SASE) operation (i.e. optimized SASE performance parameters through evolutionary algorithms) were found to be consistent with operating X-ray FEL facilities around the world. It is shown that FEL characteristics for specific user experiments can be optimized by finding several evolutionary algorithm solutions within the range of 5 keV to 10 keV.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\"43 1\",\"pages\":\"551-555\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3906/fiz-1909-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-1909-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A hard X-ray self-amplified spontaneous emission free-electron laser optimizationusing evolutionary algorithms for dedicated user applications
Accelerator-based fourth-generation light sources are utilized in a wide range of interdisciplinary applications such as nanotechnology, materials science, biosciences, and medicine. A hard X-ray free-electron laser (FEL), as a state-of-the-art light source, was optimized using evolutionary algorithms for dedicated user applications such as X-ray Raman scattering (XRS), resonant inelastic X-ray scattering (RIXS), and X-ray emission spectroscopies (XES). Optimal parameter sets were obtained for an in-vacuum planar undulator driven by an 8 GeV electron beam. Performance parameters of self-amplified spontaneous emission (SASE) operation (i.e. optimized SASE performance parameters through evolutionary algorithms) were found to be consistent with operating X-ray FEL facilities around the world. It is shown that FEL characteristics for specific user experiments can be optimized by finding several evolutionary algorithm solutions within the range of 5 keV to 10 keV.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.