度量空间中所有点最远对的逼近与最大生成树

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ching-Lueh Chang, Chun-Wei Chang
{"title":"度量空间中所有点最远对的逼近与最大生成树","authors":"Ching-Lueh Chang, Chun-Wei Chang","doi":"10.1142/s0129054123500181","DOIUrl":null,"url":null,"abstract":"Consider the problem of finding a point furthest from [Formula: see text] for each point [Formula: see text] in a metric space [Formula: see text], where [Formula: see text]. We prove this problem to have a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. As a corollary, the maximum spanning tree problem in metric spaces has a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. We also give a Monte Carlo [Formula: see text]-time algorithm outputting, for each [Formula: see text], a point [Formula: see text] satisfying [Formula: see text], where [Formula: see text]. As a corollary, we have a Monte Carlo [Formula: see text]-time algorithm for finding a spanning tree of weight at least [Formula: see text] in [Formula: see text].","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating All-Points Furthest Pairs and Maximum Spanning Trees in Metric Spaces\",\"authors\":\"Ching-Lueh Chang, Chun-Wei Chang\",\"doi\":\"10.1142/s0129054123500181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the problem of finding a point furthest from [Formula: see text] for each point [Formula: see text] in a metric space [Formula: see text], where [Formula: see text]. We prove this problem to have a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. As a corollary, the maximum spanning tree problem in metric spaces has a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. We also give a Monte Carlo [Formula: see text]-time algorithm outputting, for each [Formula: see text], a point [Formula: see text] satisfying [Formula: see text], where [Formula: see text]. As a corollary, we have a Monte Carlo [Formula: see text]-time algorithm for finding a spanning tree of weight at least [Formula: see text] in [Formula: see text].\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123500181\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123500181","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

考虑在度量空间[公式:见文本]中为每个点[公式:见文本]找到距离[公式:见文本]最远的点的问题,其中[公式:见文本]。我们证明了这个问题有一个确定性的[公式:见文]-时间[公式:见文]-近似算法。作为推论,度量空间中的最大生成树问题具有确定性的[公式:见文]-时间[公式:见文]-近似算法。我们还给出了一个蒙特卡罗[公式:见文]时间算法输出,对于每个[公式:见文],一个点[公式:见文]满足[公式:见文],其中[公式:见文]。作为推论,我们有一个蒙特卡罗[公式:见文本]时间算法,用于在[公式:见文本]中找到一个权重至少为[公式:见文本]的生成树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating All-Points Furthest Pairs and Maximum Spanning Trees in Metric Spaces
Consider the problem of finding a point furthest from [Formula: see text] for each point [Formula: see text] in a metric space [Formula: see text], where [Formula: see text]. We prove this problem to have a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. As a corollary, the maximum spanning tree problem in metric spaces has a deterministic [Formula: see text]-time [Formula: see text]-approximation algorithm. We also give a Monte Carlo [Formula: see text]-time algorithm outputting, for each [Formula: see text], a point [Formula: see text] satisfying [Formula: see text], where [Formula: see text]. As a corollary, we have a Monte Carlo [Formula: see text]-time algorithm for finding a spanning tree of weight at least [Formula: see text] in [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信