双谱小波分析在搜索内波频谱中三波相互作用中的应用

IF 0.7 Q4 OCEANOGRAPHY
G. V. Zhegulin, A. Zimin
{"title":"双谱小波分析在搜索内波频谱中三波相互作用中的应用","authors":"G. V. Zhegulin, A. Zimin","doi":"10.22449/1573-160X-2021-2-135-148","DOIUrl":null,"url":null,"abstract":"Purpose. The aim of the work is to test the bispectral wavelet analysis being applied as a tool for studying resonance interactions between the frequency components in the spectrum of internal waves (based on the example both of the model signals, the shape of which is similar to that of the solitons and boras, and the field observations data on temperature fluctuations resulted from the internal waves in the Gorlo Strait of the White Sea). Methods and Results. The paper represents a technique for detecting three-wave interactions in the internal waves’ spectrum. The method is based on the bispectral wavelet analysis. It permits to identify the interharmonic correlation and the magnitude of the quadratic phase relationship arising as a result of nonlinear interactions between the signal frequency components. In the first part of the paper, efficiency of the applied method was evaluated using the example of various artificial signals with quadratic nonlinearity in order to demonstrate the method features and advantages. In its second part, the method was used to analyze the temperature profiles obtained by scanning thermohaline sounding, in which the oscillations related to passing of the internal wave groups were recorded. It is shown that the waves with the 40 min period are generated due to quadratic nonlinearity. The auto-bicoherence function values confirm the fact that the higher harmonics are formed in the 60–120 min range as a result of the three-wave interactions. They change synchronously in time, and their amplitudes are proportional, that is typical of the initial stage of the waves’ nonlinear transformation. Absence of a periodic change in the biphase sign in the considered range indicates insignificant influence of the dispersion effects upon the short-period internal waves’ structure. Conclusions. The example of observations in the Gorlo Strait of the White Sea shows that the recorded asymmetric structure of the isotherm oscillations was formed being influenced by the three-wave interaction. Possibility of further application of the method for studying the processes of the internal waves’ nonlinear transformation and breaking is discussed.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of the Bispectral Wavelet Analysis for Searching Three-Wave Interactions in the Spectrum of Internal Waves\",\"authors\":\"G. V. Zhegulin, A. Zimin\",\"doi\":\"10.22449/1573-160X-2021-2-135-148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The aim of the work is to test the bispectral wavelet analysis being applied as a tool for studying resonance interactions between the frequency components in the spectrum of internal waves (based on the example both of the model signals, the shape of which is similar to that of the solitons and boras, and the field observations data on temperature fluctuations resulted from the internal waves in the Gorlo Strait of the White Sea). Methods and Results. The paper represents a technique for detecting three-wave interactions in the internal waves’ spectrum. The method is based on the bispectral wavelet analysis. It permits to identify the interharmonic correlation and the magnitude of the quadratic phase relationship arising as a result of nonlinear interactions between the signal frequency components. In the first part of the paper, efficiency of the applied method was evaluated using the example of various artificial signals with quadratic nonlinearity in order to demonstrate the method features and advantages. In its second part, the method was used to analyze the temperature profiles obtained by scanning thermohaline sounding, in which the oscillations related to passing of the internal wave groups were recorded. It is shown that the waves with the 40 min period are generated due to quadratic nonlinearity. The auto-bicoherence function values confirm the fact that the higher harmonics are formed in the 60–120 min range as a result of the three-wave interactions. They change synchronously in time, and their amplitudes are proportional, that is typical of the initial stage of the waves’ nonlinear transformation. Absence of a periodic change in the biphase sign in the considered range indicates insignificant influence of the dispersion effects upon the short-period internal waves’ structure. Conclusions. The example of observations in the Gorlo Strait of the White Sea shows that the recorded asymmetric structure of the isotherm oscillations was formed being influenced by the three-wave interaction. Possibility of further application of the method for studying the processes of the internal waves’ nonlinear transformation and breaking is discussed.\",\"PeriodicalId\":43550,\"journal\":{\"name\":\"Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22449/1573-160X-2021-2-135-148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/1573-160X-2021-2-135-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 1

摘要

目的。这项工作的目的是测试作为研究内波频谱中频率成分之间共振相互作用的工具的双谱小波分析(基于两个模型信号的例子,其形状与孤子和波的形状相似,以及白海Gorlo海峡内波产生的温度波动的实地观测数据)。方法与结果。本文介绍了一种在内波频谱中检测三波相互作用的技术。该方法基于双谱小波分析。它允许识别谐波间的相关性和二次相位关系的幅度,这是信号频率分量之间非线性相互作用的结果。本文第一部分以各种二次非线性人工信号为例,对该方法的有效性进行了评价,以说明该方法的特点和优点。第二部分利用该方法对扫描温盐测深得到的温度剖面进行分析,记录了与内波群通过有关的振荡。结果表明,周期为40 min的波是由二次非线性引起的。自双相干函数值证实了高次谐波在60-120分钟范围内是三波相互作用的结果。它们在时间上同步变化,振幅成正比,这是波非线性转换的初始阶段的典型特征。在考虑的范围内,双相符号没有周期性变化,表明色散效应对短周期内波结构的影响不显著。结论。白海Gorlo海峡的观测实例表明,记录的等温线振荡的不对称结构是在三波相互作用的影响下形成的。讨论了该方法进一步应用于研究内波的非线性变换和破碎过程的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Bispectral Wavelet Analysis for Searching Three-Wave Interactions in the Spectrum of Internal Waves
Purpose. The aim of the work is to test the bispectral wavelet analysis being applied as a tool for studying resonance interactions between the frequency components in the spectrum of internal waves (based on the example both of the model signals, the shape of which is similar to that of the solitons and boras, and the field observations data on temperature fluctuations resulted from the internal waves in the Gorlo Strait of the White Sea). Methods and Results. The paper represents a technique for detecting three-wave interactions in the internal waves’ spectrum. The method is based on the bispectral wavelet analysis. It permits to identify the interharmonic correlation and the magnitude of the quadratic phase relationship arising as a result of nonlinear interactions between the signal frequency components. In the first part of the paper, efficiency of the applied method was evaluated using the example of various artificial signals with quadratic nonlinearity in order to demonstrate the method features and advantages. In its second part, the method was used to analyze the temperature profiles obtained by scanning thermohaline sounding, in which the oscillations related to passing of the internal wave groups were recorded. It is shown that the waves with the 40 min period are generated due to quadratic nonlinearity. The auto-bicoherence function values confirm the fact that the higher harmonics are formed in the 60–120 min range as a result of the three-wave interactions. They change synchronously in time, and their amplitudes are proportional, that is typical of the initial stage of the waves’ nonlinear transformation. Absence of a periodic change in the biphase sign in the considered range indicates insignificant influence of the dispersion effects upon the short-period internal waves’ structure. Conclusions. The example of observations in the Gorlo Strait of the White Sea shows that the recorded asymmetric structure of the isotherm oscillations was formed being influenced by the three-wave interaction. Possibility of further application of the method for studying the processes of the internal waves’ nonlinear transformation and breaking is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Oceanography
Physical Oceanography OCEANOGRAPHY-
CiteScore
1.80
自引率
25.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信