{"title":"特殊支撑楼梯与典型支撑框架。楼梯设计的新建筑-结构-地震方法","authors":"Carlos Montalbán Turon, Yeudy F. Vargas Alzate","doi":"10.1002/tal.1997","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to the project of steel buildings, mainly focused on the architectural, structural, and seismic design of stairs. The objective is to design a structural stair system capable of controlling seismic damage and contributing to the bracing system of the building. The article begins with a review of the seismic standard (ATC, FEMA, and EC8) on which the current design criteria for new buildings with stairs are based. The research is based on two spatial building models (A–B) with the same bracing elements but placed differently. Reference Model A follows classical design approaches. It means, stairs are considered nonstructural elements that do not influence the seismic behavior of the building. This structure corresponds to typical braced frames (IV‐CBF and EBF) according to EC8. Model B includes a stair system designed to help control the effects of inter‐story drifts and inertia forces. In this case, the same bracing elements of Model A were integrated into the stair structure of Model B. A comparative seismic behavior analysis of typically braced frames (A) versus specially braced stairs (B) is presented. The research was based on the static nonlinear (pushover) analysis and the capacity spectrum method (ATC‐40) according to the seismic performance levels (FEMA) and damage limitation (EC8). Finally, the braced stairs was verified via nonlinear time‐history analysis in order to better capture the structural safety of the evacuation routes and their influence on the behavior of the building. This deterministic analysis of the braced stairs verified satisfactory results compared to reference bracing systems.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special braced stairs versus typical braced frames. New architectural‐structural‐seismic approach to stair design\",\"authors\":\"Carlos Montalbán Turon, Yeudy F. Vargas Alzate\",\"doi\":\"10.1002/tal.1997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to the project of steel buildings, mainly focused on the architectural, structural, and seismic design of stairs. The objective is to design a structural stair system capable of controlling seismic damage and contributing to the bracing system of the building. The article begins with a review of the seismic standard (ATC, FEMA, and EC8) on which the current design criteria for new buildings with stairs are based. The research is based on two spatial building models (A–B) with the same bracing elements but placed differently. Reference Model A follows classical design approaches. It means, stairs are considered nonstructural elements that do not influence the seismic behavior of the building. This structure corresponds to typical braced frames (IV‐CBF and EBF) according to EC8. Model B includes a stair system designed to help control the effects of inter‐story drifts and inertia forces. In this case, the same bracing elements of Model A were integrated into the stair structure of Model B. A comparative seismic behavior analysis of typically braced frames (A) versus specially braced stairs (B) is presented. The research was based on the static nonlinear (pushover) analysis and the capacity spectrum method (ATC‐40) according to the seismic performance levels (FEMA) and damage limitation (EC8). Finally, the braced stairs was verified via nonlinear time‐history analysis in order to better capture the structural safety of the evacuation routes and their influence on the behavior of the building. This deterministic analysis of the braced stairs verified satisfactory results compared to reference bracing systems.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.1997\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1997","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Special braced stairs versus typical braced frames. New architectural‐structural‐seismic approach to stair design
This paper presents a new approach to the project of steel buildings, mainly focused on the architectural, structural, and seismic design of stairs. The objective is to design a structural stair system capable of controlling seismic damage and contributing to the bracing system of the building. The article begins with a review of the seismic standard (ATC, FEMA, and EC8) on which the current design criteria for new buildings with stairs are based. The research is based on two spatial building models (A–B) with the same bracing elements but placed differently. Reference Model A follows classical design approaches. It means, stairs are considered nonstructural elements that do not influence the seismic behavior of the building. This structure corresponds to typical braced frames (IV‐CBF and EBF) according to EC8. Model B includes a stair system designed to help control the effects of inter‐story drifts and inertia forces. In this case, the same bracing elements of Model A were integrated into the stair structure of Model B. A comparative seismic behavior analysis of typically braced frames (A) versus specially braced stairs (B) is presented. The research was based on the static nonlinear (pushover) analysis and the capacity spectrum method (ATC‐40) according to the seismic performance levels (FEMA) and damage limitation (EC8). Finally, the braced stairs was verified via nonlinear time‐history analysis in order to better capture the structural safety of the evacuation routes and their influence on the behavior of the building. This deterministic analysis of the braced stairs verified satisfactory results compared to reference bracing systems.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.