与标志传递对称设计相关的代码的pd集

IF 0.6 Q3 MATHEMATICS
D. Crnković, Nina Mostarac
{"title":"与标志传递对称设计相关的代码的pd集","authors":"D. Crnković, Nina Mostarac","doi":"10.22108/TOC.2017.21615","DOIUrl":null,"url":null,"abstract":"‎For any prime $p$ let $C_p(G)$ be the $p$-ary code spanned by the rows of the incidence matrix $G$ of a graph $Gamma$‎. ‎Let $Gamma$ be the incidence graph of a flag-transitive symmetric design $D$‎. ‎We show that any flag-transitive‎ ‎automorphism group of $D$ can be used as a PD-set for full error correction for the linear code $C_p(G)$‎ ‎(with any information set)‎. ‎It follows that such codes derived from flag-transitive symmetric designs can be‎ ‎decoded using permutation decoding‎. ‎In that way to each flag-transitive symmetric $(v‎, ‎k‎, ‎lambda)$ design we associate a linear code of length $vk$ that is‎ ‎permutation decodable‎. ‎PD-sets obtained in the described way are usually of large cardinality‎. ‎By studying codes arising from some flag-transitive symmetric designs we show that smaller PD-sets can be found for‎ ‎specific information sets‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"37-50"},"PeriodicalIF":0.6000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PD-sets for codes related to flag-transitive symmetric designs\",\"authors\":\"D. Crnković, Nina Mostarac\",\"doi\":\"10.22108/TOC.2017.21615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎For any prime $p$ let $C_p(G)$ be the $p$-ary code spanned by the rows of the incidence matrix $G$ of a graph $Gamma$‎. ‎Let $Gamma$ be the incidence graph of a flag-transitive symmetric design $D$‎. ‎We show that any flag-transitive‎ ‎automorphism group of $D$ can be used as a PD-set for full error correction for the linear code $C_p(G)$‎ ‎(with any information set)‎. ‎It follows that such codes derived from flag-transitive symmetric designs can be‎ ‎decoded using permutation decoding‎. ‎In that way to each flag-transitive symmetric $(v‎, ‎k‎, ‎lambda)$ design we associate a linear code of length $vk$ that is‎ ‎permutation decodable‎. ‎PD-sets obtained in the described way are usually of large cardinality‎. ‎By studying codes arising from some flag-transitive symmetric designs we show that smaller PD-sets can be found for‎ ‎specific information sets‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"7 1\",\"pages\":\"37-50\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.21615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于任意素数$p$,设$C_p(G)$是由图$Gamma$的关联矩阵$G$的行所张成的$p$任意码。设$Gamma$为标志传递对称设计$D$的关联图。我们证明了$D$的任何标志传递自同构群都可以作为线性码$C_p(G)$ $(具有任何信息集)的完全纠错的pd集。由此可见,源自标志传递对称设计的此类代码可以使用置换解码来解码。这样,对于每个标志传递对称的$(v, k, lambda)$设计,我们关联一个长度为$vk$的线性代码,它是可排列解码的。以上述方式获得的pd集通常具有较大的基数。通过研究由一些标志传递对称设计产生的码,我们证明了对于特定信息集可以找到更小的pd集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PD-sets for codes related to flag-transitive symmetric designs
‎For any prime $p$ let $C_p(G)$ be the $p$-ary code spanned by the rows of the incidence matrix $G$ of a graph $Gamma$‎. ‎Let $Gamma$ be the incidence graph of a flag-transitive symmetric design $D$‎. ‎We show that any flag-transitive‎ ‎automorphism group of $D$ can be used as a PD-set for full error correction for the linear code $C_p(G)$‎ ‎(with any information set)‎. ‎It follows that such codes derived from flag-transitive symmetric designs can be‎ ‎decoded using permutation decoding‎. ‎In that way to each flag-transitive symmetric $(v‎, ‎k‎, ‎lambda)$ design we associate a linear code of length $vk$ that is‎ ‎permutation decodable‎. ‎PD-sets obtained in the described way are usually of large cardinality‎. ‎By studying codes arising from some flag-transitive symmetric designs we show that smaller PD-sets can be found for‎ ‎specific information sets‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信