Bertrand命题对任意素数和的推广

Q4 Mathematics
J. Cohen
{"title":"Bertrand命题对任意素数和的推广","authors":"J. Cohen","doi":"10.1080/0025570X.2023.2231336","DOIUrl":null,"url":null,"abstract":"Summary In 1845, Bertrand conjectured what became known as Bertrand’s postulate or the Bertrand-Chebyshev theorem: twice and prime strictly exceeds the next prime. Surprisingly, a stronger statement seems not to be well-known: the sum of any two consecutive primes strictly exceeds the next prime, except for the only equality . Our main theorem is a much more general result, perhaps not previously noticed, that compares sums of any number of primes. We prove this result using only the prime number theorem. We also give some numerical results and unanswered questions.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"428 - 432"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of Bertrand’s Postulate to Sums of Any Number of Primes\",\"authors\":\"J. Cohen\",\"doi\":\"10.1080/0025570X.2023.2231336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In 1845, Bertrand conjectured what became known as Bertrand’s postulate or the Bertrand-Chebyshev theorem: twice and prime strictly exceeds the next prime. Surprisingly, a stronger statement seems not to be well-known: the sum of any two consecutive primes strictly exceeds the next prime, except for the only equality . Our main theorem is a much more general result, perhaps not previously noticed, that compares sums of any number of primes. We prove this result using only the prime number theorem. We also give some numerical results and unanswered questions.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"96 1\",\"pages\":\"428 - 432\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2231336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2231336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要1845年,Bertrand猜想了后来被称为Bertrand公设或Bertrand-Chebyshev定理的东西:两次和素数严格超过下一个素数。令人惊讶的是,一个更强的说法似乎并不为人所知:任何两个连续素数的和都严格超过下一个素数,除了唯一的相等。我们的主要定理是一个更普遍的结果,可能以前没有注意到,它比较了任何数量的素数的和。我们只用素数定理来证明这个结果。我们还给出了一些数值结果和未回答的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizations of Bertrand’s Postulate to Sums of Any Number of Primes
Summary In 1845, Bertrand conjectured what became known as Bertrand’s postulate or the Bertrand-Chebyshev theorem: twice and prime strictly exceeds the next prime. Surprisingly, a stronger statement seems not to be well-known: the sum of any two consecutive primes strictly exceeds the next prime, except for the only equality . Our main theorem is a much more general result, perhaps not previously noticed, that compares sums of any number of primes. We prove this result using only the prime number theorem. We also give some numerical results and unanswered questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信