多样性的超多样化

Pub Date : 2020-01-01 DOI:10.1515/agms-2020-0100
Pouya Haghmaram, K. Nourouzi
{"title":"多样性的超多样化","authors":"Pouya Haghmaram, K. Nourouzi","doi":"10.1515/agms-2020-0100","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0100","citationCount":"0","resultStr":"{\"title\":\"Ultradiversification of Diversities\",\"authors\":\"Pouya Haghmaram, K. Nourouzi\",\"doi\":\"10.1515/agms-2020-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用度量空间的超度量化思想,引入了分集的超度量化。我们发现每一种多样性都有一个超多样性,这是它最大的非膨胀超多样性图像。我们还研究了多样性设置中的Hausdorff-Bayod型问题,即确定哪些多样性允许亚显性超多样性。这给出了所有能被一个内射非膨胀映射映射到超多样性上的多样性的描述。给出的结果推广了度量空间中类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ultradiversification of Diversities
Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信