{"title":"多样性的超多样化","authors":"Pouya Haghmaram, K. Nourouzi","doi":"10.1515/agms-2020-0100","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"410 - 417"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0100","citationCount":"0","resultStr":"{\"title\":\"Ultradiversification of Diversities\",\"authors\":\"Pouya Haghmaram, K. Nourouzi\",\"doi\":\"10.1515/agms-2020-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"8 1\",\"pages\":\"410 - 417\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0100\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, using the idea of ultrametrization of metric spaces we introduce ultradiversification of diversities. We show that every diversity has an ultradiversification which is the greatest nonexpansive ultra-diversity image of it. We also investigate a Hausdorff-Bayod type problem in the setting of diversities, namely, determining what diversities admit a subdominant ultradiversity. This gives a description of all diversities which can be mapped onto ultradiversities by an injective nonexpansive map. The given results generalize similar results in the setting of metric spaces.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.