核心平面细胞极性Vangl2基因在小鼠肾小管发育中的作用

I. Derish, Jeremy Lee, Sima Babayeva, E. Torban
{"title":"核心平面细胞极性Vangl2基因在小鼠肾小管发育中的作用","authors":"I. Derish, Jeremy Lee, Sima Babayeva, E. Torban","doi":"10.26443/msurj.v13i1.30","DOIUrl":null,"url":null,"abstract":"Background: Polycystic kidney disease (PKD) is a common kidney disease that affects the development and maintenance of renal tubules, leads to cyst formation, and often progresses to end-stage kidney disease. It has been postulated that defective planar cell polarity (PCP) signaling contributes to initiation of cyst formation in PKD via controlling both convergent extension (CE, a process of directional cell movements) and oriented cell division (OCD, a process of directional cell divisions during tubular elongation post-natally). Indeed, mutations of the key PCP gene, Van Gogh-like 2 (Vangl2), lead to abnormal renal tubules in murine embryonic kidneys, correlating with the original postulate.\nMethods: In order to further understand the influence of the Vangl2 gene on renal morphogenesis and cystogenesis, control and Vangl2 mutant embryos—as well as post-natal Vangl2 mice with conditional excision of the Vangl2 gene in renal collecting tubules—were generated, then analyzed using immunostaining and fluorescence microscopy.\nResults: Our results show that Vangl2 plays a role in CE and apical constriction (AC) during embryonic stage of tubulogenesis. Compared to control animals, mutant Vangl2Δ/Δ and conditional Vangl2Δ/CD embryos displayed: i) a significant dilation in the diameter of renal tubules seen as an increased tubule cross-section area and a larger number of cells per cross-section; and ii) changes in cell shape indicative of defective AC. Surprisingly, post-natal mice showed virtually no difference in any of these aspects comparing to control mice, suggesting that other pathways may compensate for the lack of PCP signaling in maintenance of the tubule architecture.\nLimitations: a) The analysis of the renal tubules at the specific time points does not account for the dynamics of tubular movement and growth in real time; b) a mechanistic and morphological distinction between mice and humans may exist in the renal collecting duct tubules, pertaining to the Vangl2 gene’s influence in the PCP pathway; and c) the degree of mosaicism resulting from the gene excision by Cre-recombinase may correlate with the severity of the phenotype.\nConclusion: We conclude that the PCP pathway is required for normal tubule development during embryogenesis. Our results, however, indicate that the cystogenesis seen in PKD postnatally may not be directly attributed to the disrupted PCP signaling, and requires the derangement of additional pathways.","PeriodicalId":91927,"journal":{"name":"McGill Science undergraduate research journal : MSURJ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Core Planar Cell Polarity Vangl2 Gene in the Renal Tubule Development in Mice\",\"authors\":\"I. Derish, Jeremy Lee, Sima Babayeva, E. Torban\",\"doi\":\"10.26443/msurj.v13i1.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Polycystic kidney disease (PKD) is a common kidney disease that affects the development and maintenance of renal tubules, leads to cyst formation, and often progresses to end-stage kidney disease. It has been postulated that defective planar cell polarity (PCP) signaling contributes to initiation of cyst formation in PKD via controlling both convergent extension (CE, a process of directional cell movements) and oriented cell division (OCD, a process of directional cell divisions during tubular elongation post-natally). Indeed, mutations of the key PCP gene, Van Gogh-like 2 (Vangl2), lead to abnormal renal tubules in murine embryonic kidneys, correlating with the original postulate.\\nMethods: In order to further understand the influence of the Vangl2 gene on renal morphogenesis and cystogenesis, control and Vangl2 mutant embryos—as well as post-natal Vangl2 mice with conditional excision of the Vangl2 gene in renal collecting tubules—were generated, then analyzed using immunostaining and fluorescence microscopy.\\nResults: Our results show that Vangl2 plays a role in CE and apical constriction (AC) during embryonic stage of tubulogenesis. Compared to control animals, mutant Vangl2Δ/Δ and conditional Vangl2Δ/CD embryos displayed: i) a significant dilation in the diameter of renal tubules seen as an increased tubule cross-section area and a larger number of cells per cross-section; and ii) changes in cell shape indicative of defective AC. Surprisingly, post-natal mice showed virtually no difference in any of these aspects comparing to control mice, suggesting that other pathways may compensate for the lack of PCP signaling in maintenance of the tubule architecture.\\nLimitations: a) The analysis of the renal tubules at the specific time points does not account for the dynamics of tubular movement and growth in real time; b) a mechanistic and morphological distinction between mice and humans may exist in the renal collecting duct tubules, pertaining to the Vangl2 gene’s influence in the PCP pathway; and c) the degree of mosaicism resulting from the gene excision by Cre-recombinase may correlate with the severity of the phenotype.\\nConclusion: We conclude that the PCP pathway is required for normal tubule development during embryogenesis. Our results, however, indicate that the cystogenesis seen in PKD postnatally may not be directly attributed to the disrupted PCP signaling, and requires the derangement of additional pathways.\",\"PeriodicalId\":91927,\"journal\":{\"name\":\"McGill Science undergraduate research journal : MSURJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"McGill Science undergraduate research journal : MSURJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26443/msurj.v13i1.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"McGill Science undergraduate research journal : MSURJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26443/msurj.v13i1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:多囊肾病(PKD)是一种常见的肾脏疾病,影响肾小管的发育和维持,导致囊肿形成,并经常发展为终末期肾病。据推测,有缺陷的平面细胞极性(PCP)信号传导通过控制会聚延伸(CE,一种定向细胞运动的过程)和定向细胞分裂(OCD,一种出生后管状延伸过程中定向细胞分裂的过程),有助于PKD中囊肿形成的启动。事实上,关键的PCP基因Van Gogh样2(Vangl2)的突变会导致小鼠胚胎肾脏的肾小管异常,这与最初的假设有关。方法:为了进一步了解Vangl2基因对肾脏形态发生和膀胱生成的影响,产生对照和Vangl2突变胚胎,以及在肾集合管中有条件切除Vangl2的产后Vangl2小鼠,然后使用免疫染色和荧光显微镜进行分析。结果:我们的研究结果表明,Vangl2在胚胎期小管形成的CE和根尖收缩(AC)中发挥作用。与对照动物相比,突变型Vangl2Δ/Δ和条件性Vangl2△/CD胚胎显示:i)肾小管直径显著扩张,表现为肾小管横截面积增加,每个横截面的细胞数量增加;和ii)细胞形状的变化表明AC有缺陷。令人惊讶的是,与对照小鼠相比,出生后的小鼠在这些方面几乎没有表现出任何差异,这表明其他途径可以补偿在维持小管结构中PCP信号的缺乏。局限性:a)在特定时间点对肾小管的分析没有实时说明肾小管运动和生长的动力学;b) 小鼠和人类之间的机制和形态学差异可能存在于肾集合管小管中,这与Vangl2基因在PCP途径中的影响有关;和c)由Cre重组酶的基因切除引起的嵌合程度可能与表型的严重程度相关。结论:PCP通路是胚胎发生过程中小管正常发育所必需的。然而,我们的研究结果表明,出生后PKD中出现的膀胱生成可能不是PCP信号中断的直接原因,而是需要其他途径的紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Core Planar Cell Polarity Vangl2 Gene in the Renal Tubule Development in Mice
Background: Polycystic kidney disease (PKD) is a common kidney disease that affects the development and maintenance of renal tubules, leads to cyst formation, and often progresses to end-stage kidney disease. It has been postulated that defective planar cell polarity (PCP) signaling contributes to initiation of cyst formation in PKD via controlling both convergent extension (CE, a process of directional cell movements) and oriented cell division (OCD, a process of directional cell divisions during tubular elongation post-natally). Indeed, mutations of the key PCP gene, Van Gogh-like 2 (Vangl2), lead to abnormal renal tubules in murine embryonic kidneys, correlating with the original postulate. Methods: In order to further understand the influence of the Vangl2 gene on renal morphogenesis and cystogenesis, control and Vangl2 mutant embryos—as well as post-natal Vangl2 mice with conditional excision of the Vangl2 gene in renal collecting tubules—were generated, then analyzed using immunostaining and fluorescence microscopy. Results: Our results show that Vangl2 plays a role in CE and apical constriction (AC) during embryonic stage of tubulogenesis. Compared to control animals, mutant Vangl2Δ/Δ and conditional Vangl2Δ/CD embryos displayed: i) a significant dilation in the diameter of renal tubules seen as an increased tubule cross-section area and a larger number of cells per cross-section; and ii) changes in cell shape indicative of defective AC. Surprisingly, post-natal mice showed virtually no difference in any of these aspects comparing to control mice, suggesting that other pathways may compensate for the lack of PCP signaling in maintenance of the tubule architecture. Limitations: a) The analysis of the renal tubules at the specific time points does not account for the dynamics of tubular movement and growth in real time; b) a mechanistic and morphological distinction between mice and humans may exist in the renal collecting duct tubules, pertaining to the Vangl2 gene’s influence in the PCP pathway; and c) the degree of mosaicism resulting from the gene excision by Cre-recombinase may correlate with the severity of the phenotype. Conclusion: We conclude that the PCP pathway is required for normal tubule development during embryogenesis. Our results, however, indicate that the cystogenesis seen in PKD postnatally may not be directly attributed to the disrupted PCP signaling, and requires the derangement of additional pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信