锥约束上不可微多目标分式规划问题的高阶对称对偶

R. Dubey, Deepmala, V. Mishra
{"title":"锥约束上不可微多目标分式规划问题的高阶对称对偶","authors":"R. Dubey, Deepmala, V. Mishra","doi":"10.19139/soic-2310-5070-601","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the definition of higher-order K-(C,α, ρ, d)-convexity/pseudoconvexity over cone and discuss a nontrivial numerical examples for existing such type of functions. The purpose of the paper is to study higher order fractional symmetric duality over arbitrary cones for nondifferentiable Mond-Weir type programs under higherorder K -(C,α, ρ, d)-convexity/pseudoconvexity assumptions. Next, we prove appropriate duality relations under aforesaid assumptions.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"187-205"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone contraints\",\"authors\":\"R. Dubey, Deepmala, V. Mishra\",\"doi\":\"10.19139/soic-2310-5070-601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the definition of higher-order K-(C,α, ρ, d)-convexity/pseudoconvexity over cone and discuss a nontrivial numerical examples for existing such type of functions. The purpose of the paper is to study higher order fractional symmetric duality over arbitrary cones for nondifferentiable Mond-Weir type programs under higherorder K -(C,α, ρ, d)-convexity/pseudoconvexity assumptions. Next, we prove appropriate duality relations under aforesaid assumptions.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"187-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文介绍了锥上高阶K-(C,α,ρ,d)-凸性/拟凸性的定义,并讨论了已有这类函数的一个不平凡的数值例子。本文的目的是研究在高阶K-(C,α,ρ,d)-凸性/伪凸性假设下,不可微Mond-Weir型程序在任意锥上的高阶分数对称对偶。接下来,我们在上述假设下证明了适当的对偶关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone contraints
In this paper, we introduce the definition of higher-order K-(C,α, ρ, d)-convexity/pseudoconvexity over cone and discuss a nontrivial numerical examples for existing such type of functions. The purpose of the paper is to study higher order fractional symmetric duality over arbitrary cones for nondifferentiable Mond-Weir type programs under higherorder K -(C,α, ρ, d)-convexity/pseudoconvexity assumptions. Next, we prove appropriate duality relations under aforesaid assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信