为RAAGs提供外太空

IF 2.3 1区 数学 Q1 MATHEMATICS
Corey Bregman, Ruth Charney, K. Vogtmann
{"title":"为RAAGs提供外太空","authors":"Corey Bregman, Ruth Charney, K. Vogtmann","doi":"10.1215/00127094-2023-0007","DOIUrl":null,"url":null,"abstract":"For any right-angled Artin group $A_{\\Gamma}$ we construct a finite-dimensional space $\\mathcal{O}_{\\Gamma}$ on which the group $\\text{Out}(A_{\\Gamma})$ of outer automorphisms of $A_{\\Gamma}$ acts properly. We prove that $\\mathcal{O}_{\\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\\text{Out}(A_{\\Gamma})$. The space $\\mathcal{O}_{\\Gamma}$ blends features of the symmetric space of lattices in $\\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\\mathcal{O}_{\\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\\Gamma}$.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Outer space for RAAGs\",\"authors\":\"Corey Bregman, Ruth Charney, K. Vogtmann\",\"doi\":\"10.1215/00127094-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any right-angled Artin group $A_{\\\\Gamma}$ we construct a finite-dimensional space $\\\\mathcal{O}_{\\\\Gamma}$ on which the group $\\\\text{Out}(A_{\\\\Gamma})$ of outer automorphisms of $A_{\\\\Gamma}$ acts properly. We prove that $\\\\mathcal{O}_{\\\\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\\\\text{Out}(A_{\\\\Gamma})$. The space $\\\\mathcal{O}_{\\\\Gamma}$ blends features of the symmetric space of lattices in $\\\\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\\\\mathcal{O}_{\\\\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\\\\Gamma}$.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2023-0007\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

对于任何直角Artin群$A_{\Gamma}$,我们构造了一个有限维空间$\mathcal{O}_{\Gamma}$的外自同构的群$\text{Out}(A_{\伽玛})$正确作用于其上。我们证明$\mathcal{O}_{\Gamma}$是可压缩的,因此商是$\text{Out}(a_{\伽玛})$的有理分类空间。空间$\mathcal{O}_{\Gamma}$混合了$\mathbb{R}^n$中格的对称空间的特征与自由群$F_n$的外空间的特征。$\mathcal中的点数{O}_{\Gamma}$是与某些局部CAT(0)立方体复形同胚(但不是等距)的局部CAT(O)度量空间,其基本群与$A_{\Gamma}$同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outer space for RAAGs
For any right-angled Artin group $A_{\Gamma}$ we construct a finite-dimensional space $\mathcal{O}_{\Gamma}$ on which the group $\text{Out}(A_{\Gamma})$ of outer automorphisms of $A_{\Gamma}$ acts properly. We prove that $\mathcal{O}_{\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\text{Out}(A_{\Gamma})$. The space $\mathcal{O}_{\Gamma}$ blends features of the symmetric space of lattices in $\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\mathcal{O}_{\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\Gamma}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信