{"title":"为RAAGs提供外太空","authors":"Corey Bregman, Ruth Charney, K. Vogtmann","doi":"10.1215/00127094-2023-0007","DOIUrl":null,"url":null,"abstract":"For any right-angled Artin group $A_{\\Gamma}$ we construct a finite-dimensional space $\\mathcal{O}_{\\Gamma}$ on which the group $\\text{Out}(A_{\\Gamma})$ of outer automorphisms of $A_{\\Gamma}$ acts properly. We prove that $\\mathcal{O}_{\\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\\text{Out}(A_{\\Gamma})$. The space $\\mathcal{O}_{\\Gamma}$ blends features of the symmetric space of lattices in $\\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\\mathcal{O}_{\\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\\Gamma}$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Outer space for RAAGs\",\"authors\":\"Corey Bregman, Ruth Charney, K. Vogtmann\",\"doi\":\"10.1215/00127094-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any right-angled Artin group $A_{\\\\Gamma}$ we construct a finite-dimensional space $\\\\mathcal{O}_{\\\\Gamma}$ on which the group $\\\\text{Out}(A_{\\\\Gamma})$ of outer automorphisms of $A_{\\\\Gamma}$ acts properly. We prove that $\\\\mathcal{O}_{\\\\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\\\\text{Out}(A_{\\\\Gamma})$. The space $\\\\mathcal{O}_{\\\\Gamma}$ blends features of the symmetric space of lattices in $\\\\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\\\\mathcal{O}_{\\\\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\\\\Gamma}$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
For any right-angled Artin group $A_{\Gamma}$ we construct a finite-dimensional space $\mathcal{O}_{\Gamma}$ on which the group $\text{Out}(A_{\Gamma})$ of outer automorphisms of $A_{\Gamma}$ acts properly. We prove that $\mathcal{O}_{\Gamma}$ is contractible, so that the quotient is a rational classifying space for $\text{Out}(A_{\Gamma})$. The space $\mathcal{O}_{\Gamma}$ blends features of the symmetric space of lattices in $\mathbb{R}^n$ with those of Outer space for the free group $F_n$. Points in $\mathcal{O}_{\Gamma}$ are locally CAT(0) metric spaces that are homeomorphic (but not isometric) to certain locally CAT(0) cube complexes, marked by an isomorphism of their fundamental group with $A_{\Gamma}$.