{"title":"日本西南三巴川变质带次生杜褶皱叠印:对东欧亚边缘应变椭球体和古近系构造的启示","authors":"Mutsuki Aoya","doi":"10.1111/iar.12463","DOIUrl":null,"url":null,"abstract":"<p>Two contrasting results of strain analyses, constriction and flattening, are recognized in the Sambagawa high-pressure/temperature metamorphic belt, SW Japan. An unverified proposal to account for this situation is that the constrictional strain ellipsoids develop only in areas where there is strong overprinting by a secondary Du-phase folding after a penetrative Ds-phase deformation. Field studies in the Hibihara district, central Shikoku, which is located between a southern constrictional region and a northern flattening region, reveal there is a map-scale contrast in the effect of Du: outcrop-scale Du upright folds are common in the southern region while they are rare in the northern region. Field measurements show that overall orientation of Ds strain is characterized by E–W stretching and vertical shortening, while that of Du strain is characterized by N–S shortening and vertical extension. The shortening caused by Du in the southern high-Du-strain regions estimated by the fold-curve tracing method are down to about 70%–56% and by removing this Du shortening most of the constrictional strain ellipsoids are restored back to the flattening field with only a few exceptions, suggesting that pre-Du strain states of the Sambagawa metamorphic rocks were dominantly of the flattening type. These results support the previous ideas that invoke differences in the strength of Du overprinting for the two different types of strain ellipsoids observed in the Sambagawa belt. From a tectonic point of view, the semi-penetrative occurrence of Du folds throughout the Sambagawa belt, which stretches about 800 km in SW Japan, suggests that the Du phase can be related to some ancient plate movement. The significant shortening subnormal to the orogen that characterizes Du may reflect a shift to orogen-subnormal subduction of the Pacific plate beneath the Eurasian plate at around 60 Ma.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overprint of secondary Du folding in the Sambagawa metamorphic belt, SW Japan: Implications for strain ellipsoids and Paleogene tectonics of the east-Eurasian margin\",\"authors\":\"Mutsuki Aoya\",\"doi\":\"10.1111/iar.12463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two contrasting results of strain analyses, constriction and flattening, are recognized in the Sambagawa high-pressure/temperature metamorphic belt, SW Japan. An unverified proposal to account for this situation is that the constrictional strain ellipsoids develop only in areas where there is strong overprinting by a secondary Du-phase folding after a penetrative Ds-phase deformation. Field studies in the Hibihara district, central Shikoku, which is located between a southern constrictional region and a northern flattening region, reveal there is a map-scale contrast in the effect of Du: outcrop-scale Du upright folds are common in the southern region while they are rare in the northern region. Field measurements show that overall orientation of Ds strain is characterized by E–W stretching and vertical shortening, while that of Du strain is characterized by N–S shortening and vertical extension. The shortening caused by Du in the southern high-Du-strain regions estimated by the fold-curve tracing method are down to about 70%–56% and by removing this Du shortening most of the constrictional strain ellipsoids are restored back to the flattening field with only a few exceptions, suggesting that pre-Du strain states of the Sambagawa metamorphic rocks were dominantly of the flattening type. These results support the previous ideas that invoke differences in the strength of Du overprinting for the two different types of strain ellipsoids observed in the Sambagawa belt. From a tectonic point of view, the semi-penetrative occurrence of Du folds throughout the Sambagawa belt, which stretches about 800 km in SW Japan, suggests that the Du phase can be related to some ancient plate movement. The significant shortening subnormal to the orogen that characterizes Du may reflect a shift to orogen-subnormal subduction of the Pacific plate beneath the Eurasian plate at around 60 Ma.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12463\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12463","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Overprint of secondary Du folding in the Sambagawa metamorphic belt, SW Japan: Implications for strain ellipsoids and Paleogene tectonics of the east-Eurasian margin
Two contrasting results of strain analyses, constriction and flattening, are recognized in the Sambagawa high-pressure/temperature metamorphic belt, SW Japan. An unverified proposal to account for this situation is that the constrictional strain ellipsoids develop only in areas where there is strong overprinting by a secondary Du-phase folding after a penetrative Ds-phase deformation. Field studies in the Hibihara district, central Shikoku, which is located between a southern constrictional region and a northern flattening region, reveal there is a map-scale contrast in the effect of Du: outcrop-scale Du upright folds are common in the southern region while they are rare in the northern region. Field measurements show that overall orientation of Ds strain is characterized by E–W stretching and vertical shortening, while that of Du strain is characterized by N–S shortening and vertical extension. The shortening caused by Du in the southern high-Du-strain regions estimated by the fold-curve tracing method are down to about 70%–56% and by removing this Du shortening most of the constrictional strain ellipsoids are restored back to the flattening field with only a few exceptions, suggesting that pre-Du strain states of the Sambagawa metamorphic rocks were dominantly of the flattening type. These results support the previous ideas that invoke differences in the strength of Du overprinting for the two different types of strain ellipsoids observed in the Sambagawa belt. From a tectonic point of view, the semi-penetrative occurrence of Du folds throughout the Sambagawa belt, which stretches about 800 km in SW Japan, suggests that the Du phase can be related to some ancient plate movement. The significant shortening subnormal to the orogen that characterizes Du may reflect a shift to orogen-subnormal subduction of the Pacific plate beneath the Eurasian plate at around 60 Ma.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.