{"title":"Crane Cloud:针对资源受限设置的弹性多云服务抽象层","authors":"Engineer Bainomugisha, Alex Mwotil","doi":"10.1016/j.deveng.2022.100102","DOIUrl":null,"url":null,"abstract":"<div><p>Developers and users situated in low-resource settings are faced with unique contextual and infrastructure challenges when accessing and consuming cloud-based services. In low-resource settings, access to cloud services and platforms is usually characterized by low-end computing devices and often unreliable and slow mobile broadband Internet connections. In this paper, we discuss key challenges for developing for and accessing cloud services in resource constrained settings, namely, (1) Frequent Internet partitions and bandwidth constraints, (2) Data jurisdiction restrictions, (3) Vendor lock-in, and (4) Poor quality of service. Inspired by these challenges, we propose a set of important design considerations and properties for a resilient multi-cloud service layer, that includes: (1) Containerization and orchestration of applications, (2) Application placement and replication, (3) Portability and multi-cloud migration, (4) Resilience to network partitions and bandwidth constraints, (5) Automated service discovery and load balancing, (6) Localized image registry, and (7) Support for platform monitoring and management. We present an implementation and validation case study, Crane Cloud, an open source multi-cloud service abstraction layer built on-top of Kubernetes that is designed with inherent support for resilience to network partitions, microservice orchestration (deployment, scaling and management of containerized applications), a localized image registry, support for migration of services between private and public clouds to avoid vendor lock-in issues and platform monitoring. We evaluate the performance and user experience of Crane Cloud by implementing and deploying a computational and bandwidth intensive machine learning system. The results show lower response times of the system on Crane Cloud compared with hosting on other public clouds. The Crane Cloud platform is serving as a cloud-service for students and developers in low-resource settings and also as an education platform for cloud computing.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"7 ","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352728522000112/pdfft?md5=1bf07a73e7a9bcfedcbc06892af5a31d&pid=1-s2.0-S2352728522000112-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Crane Cloud: A resilient multi-cloud service abstraction layer for resource-constrained settings\",\"authors\":\"Engineer Bainomugisha, Alex Mwotil\",\"doi\":\"10.1016/j.deveng.2022.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developers and users situated in low-resource settings are faced with unique contextual and infrastructure challenges when accessing and consuming cloud-based services. In low-resource settings, access to cloud services and platforms is usually characterized by low-end computing devices and often unreliable and slow mobile broadband Internet connections. In this paper, we discuss key challenges for developing for and accessing cloud services in resource constrained settings, namely, (1) Frequent Internet partitions and bandwidth constraints, (2) Data jurisdiction restrictions, (3) Vendor lock-in, and (4) Poor quality of service. Inspired by these challenges, we propose a set of important design considerations and properties for a resilient multi-cloud service layer, that includes: (1) Containerization and orchestration of applications, (2) Application placement and replication, (3) Portability and multi-cloud migration, (4) Resilience to network partitions and bandwidth constraints, (5) Automated service discovery and load balancing, (6) Localized image registry, and (7) Support for platform monitoring and management. We present an implementation and validation case study, Crane Cloud, an open source multi-cloud service abstraction layer built on-top of Kubernetes that is designed with inherent support for resilience to network partitions, microservice orchestration (deployment, scaling and management of containerized applications), a localized image registry, support for migration of services between private and public clouds to avoid vendor lock-in issues and platform monitoring. We evaluate the performance and user experience of Crane Cloud by implementing and deploying a computational and bandwidth intensive machine learning system. The results show lower response times of the system on Crane Cloud compared with hosting on other public clouds. The Crane Cloud platform is serving as a cloud-service for students and developers in low-resource settings and also as an education platform for cloud computing.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"7 \",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352728522000112/pdfft?md5=1bf07a73e7a9bcfedcbc06892af5a31d&pid=1-s2.0-S2352728522000112-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728522000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728522000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Crane Cloud: A resilient multi-cloud service abstraction layer for resource-constrained settings
Developers and users situated in low-resource settings are faced with unique contextual and infrastructure challenges when accessing and consuming cloud-based services. In low-resource settings, access to cloud services and platforms is usually characterized by low-end computing devices and often unreliable and slow mobile broadband Internet connections. In this paper, we discuss key challenges for developing for and accessing cloud services in resource constrained settings, namely, (1) Frequent Internet partitions and bandwidth constraints, (2) Data jurisdiction restrictions, (3) Vendor lock-in, and (4) Poor quality of service. Inspired by these challenges, we propose a set of important design considerations and properties for a resilient multi-cloud service layer, that includes: (1) Containerization and orchestration of applications, (2) Application placement and replication, (3) Portability and multi-cloud migration, (4) Resilience to network partitions and bandwidth constraints, (5) Automated service discovery and load balancing, (6) Localized image registry, and (7) Support for platform monitoring and management. We present an implementation and validation case study, Crane Cloud, an open source multi-cloud service abstraction layer built on-top of Kubernetes that is designed with inherent support for resilience to network partitions, microservice orchestration (deployment, scaling and management of containerized applications), a localized image registry, support for migration of services between private and public clouds to avoid vendor lock-in issues and platform monitoring. We evaluate the performance and user experience of Crane Cloud by implementing and deploying a computational and bandwidth intensive machine learning system. The results show lower response times of the system on Crane Cloud compared with hosting on other public clouds. The Crane Cloud platform is serving as a cloud-service for students and developers in low-resource settings and also as an education platform for cloud computing.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."