一种预测穿孔炮口制动器效率的方法

M. Czyżewska, R. Trębiński
{"title":"一种预测穿孔炮口制动器效率的方法","authors":"M. Czyżewska, R. Trębiński","doi":"10.5604/01.3001.0015.5985","DOIUrl":null,"url":null,"abstract":"This paper presents a method for predicting a value of a gasdynamic efficiency coefficient for perforated muzzle brakes. The method is based on the interior ballistics modelling for determining gasdynamic flow parameters at the brake inlet and 2D modelling the processes inside the brake with treating vents as circumferential slots. \nThe modelling provides information about the mass flux time changes at the inlet and at the outlet of the brake. Using this information, the mass partition coefficient values and the gasdynamic efficiency coefficient values are calculated. It has been shown that the mass partition coefficient establishes very quickly and it is determined only by the geometry of the brake. The gasdynamic efficiency coefficient establishes after a relatively long time, what demands carrying out calculations for a relatively long time period. However, it has been shown that this problem can be solved by making use of the established ratio of mass fluxes at the outlet and the inlet. \nSo, flow parameters’ values at the inlet are sufficient for determining the gasdynamic efficiency coefficient to the moment of attaining the final value. It has been shown that this value depends on the ballistics and on the vents inclination angle.\n\n","PeriodicalId":52820,"journal":{"name":"Problemy Mechatroniki","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Predicting Efficiency of Perforated Muzzle Brakes\",\"authors\":\"M. Czyżewska, R. Trębiński\",\"doi\":\"10.5604/01.3001.0015.5985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for predicting a value of a gasdynamic efficiency coefficient for perforated muzzle brakes. The method is based on the interior ballistics modelling for determining gasdynamic flow parameters at the brake inlet and 2D modelling the processes inside the brake with treating vents as circumferential slots. \\nThe modelling provides information about the mass flux time changes at the inlet and at the outlet of the brake. Using this information, the mass partition coefficient values and the gasdynamic efficiency coefficient values are calculated. It has been shown that the mass partition coefficient establishes very quickly and it is determined only by the geometry of the brake. The gasdynamic efficiency coefficient establishes after a relatively long time, what demands carrying out calculations for a relatively long time period. However, it has been shown that this problem can be solved by making use of the established ratio of mass fluxes at the outlet and the inlet. \\nSo, flow parameters’ values at the inlet are sufficient for determining the gasdynamic efficiency coefficient to the moment of attaining the final value. It has been shown that this value depends on the ballistics and on the vents inclination angle.\\n\\n\",\"PeriodicalId\":52820,\"journal\":{\"name\":\"Problemy Mechatroniki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemy Mechatroniki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.5985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Mechatroniki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.5985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种预测穿孔炮口制动器气动效率系数的方法。该方法基于内弹道模型确定制动入口气体动力学流动参数,并将通风口视为周向槽,对制动内部过程进行二维建模。该模型提供了制动入口和出口质量通量时间变化的信息。利用这些信息,计算了质量分配系数值和气动力效率系数值。研究表明,质量分配系数的建立速度非常快,它仅由制动器的几何形状决定。气动力效率系数是经过较长时间建立的,需要进行较长时间的计算。然而,已经表明,这个问题可以通过利用既定的出口和进口质量通量比来解决。因此,进口处的流动参数值足以确定气动力效率系数直至达到最终值的时刻。结果表明,这一数值取决于弹道和通风口的倾斜角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Predicting Efficiency of Perforated Muzzle Brakes
This paper presents a method for predicting a value of a gasdynamic efficiency coefficient for perforated muzzle brakes. The method is based on the interior ballistics modelling for determining gasdynamic flow parameters at the brake inlet and 2D modelling the processes inside the brake with treating vents as circumferential slots. The modelling provides information about the mass flux time changes at the inlet and at the outlet of the brake. Using this information, the mass partition coefficient values and the gasdynamic efficiency coefficient values are calculated. It has been shown that the mass partition coefficient establishes very quickly and it is determined only by the geometry of the brake. The gasdynamic efficiency coefficient establishes after a relatively long time, what demands carrying out calculations for a relatively long time period. However, it has been shown that this problem can be solved by making use of the established ratio of mass fluxes at the outlet and the inlet. So, flow parameters’ values at the inlet are sufficient for determining the gasdynamic efficiency coefficient to the moment of attaining the final value. It has been shown that this value depends on the ballistics and on the vents inclination angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信