{"title":"四元平面光谱测度的光谱特征矩阵","authors":"S.-J. Li, W.-H. Ai","doi":"10.1007/s10476-023-0207-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the spectral eigenmatrix problem of the planar self-similar spectral measures <i>μ</i><sub><i>Q,D</i></sub> generated by </p><div><div><span>$$Q = \\left({\\matrix{{2q} & 0 \\cr 0 & {2q} \\cr}} \\right)\\,\\,\\,{\\rm{and}}\\,\\,\\,D = \\left\\{{\\left({\\matrix{0 \\cr 0 \\cr}} \\right),\\left({\\matrix{1 \\cr 0 \\cr}} \\right),\\left({\\matrix{0 \\cr 1 \\cr}} \\right),\\left({\\matrix{{- 1} \\cr {- 1} \\cr}} \\right)} \\right\\},$$</span></div></div><p> where <i>q</i> ≥ 2 is an integer. For matrix <i>R</i> ∈ <i>M</i><sub>2</sub>(ℤ), we prove that there exist some spectrum Λ such that Λ and <i>R</i>Λ are both the spectra of <i>μ</i><sub><i>Q,D</i></sub> if and only if det <i>R</i> ∈ 2ℤ + 1.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0207-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Spectral eigenmatrix of the planar spectral measures with four elements\",\"authors\":\"S.-J. Li, W.-H. Ai\",\"doi\":\"10.1007/s10476-023-0207-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the spectral eigenmatrix problem of the planar self-similar spectral measures <i>μ</i><sub><i>Q,D</i></sub> generated by </p><div><div><span>$$Q = \\\\left({\\\\matrix{{2q} & 0 \\\\cr 0 & {2q} \\\\cr}} \\\\right)\\\\,\\\\,\\\\,{\\\\rm{and}}\\\\,\\\\,\\\\,D = \\\\left\\\\{{\\\\left({\\\\matrix{0 \\\\cr 0 \\\\cr}} \\\\right),\\\\left({\\\\matrix{1 \\\\cr 0 \\\\cr}} \\\\right),\\\\left({\\\\matrix{0 \\\\cr 1 \\\\cr}} \\\\right),\\\\left({\\\\matrix{{- 1} \\\\cr {- 1} \\\\cr}} \\\\right)} \\\\right\\\\},$$</span></div></div><p> where <i>q</i> ≥ 2 is an integer. For matrix <i>R</i> ∈ <i>M</i><sub>2</sub>(ℤ), we prove that there exist some spectrum Λ such that Λ and <i>R</i>Λ are both the spectra of <i>μ</i><sub><i>Q,D</i></sub> if and only if det <i>R</i> ∈ 2ℤ + 1.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0207-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0207-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0207-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where q ≥ 2 is an integer. For matrix R ∈ M2(ℤ), we prove that there exist some spectrum Λ such that Λ and RΛ are both the spectra of μQ,D if and only if det R ∈ 2ℤ + 1.