非交换L^p空间上分离映射的分解

IF 1.2 2区 数学 Q1 MATHEMATICS
C. Merdy, S. Zadeh
{"title":"非交换L^p空间上分离映射的分解","authors":"C. Merdy, S. Zadeh","doi":"10.1512/iumj.2022.71.9111","DOIUrl":null,"url":null,"abstract":"For any semifinite von Neumann algebra ${\\mathcal M}$ and any $1\\leq p<\\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\\mathcal M};S^1)$. We say that a bounded map $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\\overline{\\otimes} I_{S^1}$ from $ L^p({\\mathcal M};S^1)$ into $L^p({\\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\\Vert T\\overline{\\otimes} I_{S^1}\\Vert =\\Vert T\\Vert$. We use the above as a tool to investigate the separating maps $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\\colon{\\mathcal M}\\to{\\mathcal N}$, a partial isometry $w\\in{\\mathcal N}$ and a positive operator $B$ affiliated with ${\\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\\in {\\mathcal M}\\cap L^p({\\mathcal M})$. Given a separating isometry $T\\colon L^p({\\mathcal M})\\to L^p({\\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\\not=2$, the above holds true if and only if $T$ is completely contractive.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On factorization of separating maps on noncommutative L^p-spaces\",\"authors\":\"C. Merdy, S. Zadeh\",\"doi\":\"10.1512/iumj.2022.71.9111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any semifinite von Neumann algebra ${\\\\mathcal M}$ and any $1\\\\leq p<\\\\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\\\\mathcal M};S^1)$. We say that a bounded map $T\\\\colon L^p({\\\\mathcal M})\\\\to L^p({\\\\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\\\\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\\\\overline{\\\\otimes} I_{S^1}$ from $ L^p({\\\\mathcal M};S^1)$ into $L^p({\\\\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\\\\Vert T\\\\overline{\\\\otimes} I_{S^1}\\\\Vert =\\\\Vert T\\\\Vert$. We use the above as a tool to investigate the separating maps $T\\\\colon L^p({\\\\mathcal M})\\\\to L^p({\\\\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\\\\colon{\\\\mathcal M}\\\\to{\\\\mathcal N}$, a partial isometry $w\\\\in{\\\\mathcal N}$ and a positive operator $B$ affiliated with ${\\\\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\\\\in {\\\\mathcal M}\\\\cap L^p({\\\\mathcal M})$. Given a separating isometry $T\\\\colon L^p({\\\\mathcal M})\\\\to L^p({\\\\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\\\\not=2$, the above holds true if and only if $T$ is completely contractive.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9111\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

对于任何半群von Neumann代数${\mathcal M}$和任何$1\leq p<\infty$,我们引入了一个自然的$S^1$值非交换$L^p$空间$L^p({\math M};S^1)$。我们说,如果$T\otimes I_{S^1}$从$L^p({\mathcal M};S^1)$扩展到有界(相应的收缩)映射$T\overline{\S^1}$L^p({\ mathcal N};S ^1)$到$L^p[{\math N})$,则从L^p到L^p的有界映射$T\冒号L^p。我们证明了任何完全正映射都是$S^1$有界的,其中$\Vert T\overline{\otimes}I_{S^1}\Vert=\Vert T\Vert$。我们使用上面的工具来研究允许直接Yeadon型因子分解的分离映射$T\colon L^p({\mathcal M})\到L^p,$B$在$J$的范围内进行转换,并且$T(x)=wBJ(x)$对于{\mathcal M}\cap L^p({\mathical M})$中的任何$x\。给定一个分离等距$T\冒号L^p({\mathcal M})\到L^p({\athcal N})$,我们证明了$T$是$S^1$收缩的当且仅当它允许直接Yeadon型因子分解。我们进一步证明,如果$p\not=2$,则当且仅当$T$是完全收缩的,上述成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On factorization of separating maps on noncommutative L^p-spaces
For any semifinite von Neumann algebra ${\mathcal M}$ and any $1\leq p<\infty$, we introduce a natutal $S^1$-valued noncommutative $L^p$-space $L^p({\mathcal M};S^1)$. We say that a bounded map $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ is $S^1$-bounded (resp. $S^1$-contractive) if $T\otimes I_{S^1}$ extends to a bounded (resp. contractive) map $T\overline{\otimes} I_{S^1}$ from $ L^p({\mathcal M};S^1)$ into $L^p({\mathcal N};S^1)$. We show that any completely positive map is $S^1$-bounded, with $\Vert T\overline{\otimes} I_{S^1}\Vert =\Vert T\Vert$. We use the above as a tool to investigate the separating maps $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w^*$-continuous $*$-homomorphism $J\colon{\mathcal M}\to{\mathcal N}$, a partial isometry $w\in{\mathcal N}$ and a positive operator $B$ affiliated with ${\mathcal N}$ such that $w^*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\in {\mathcal M}\cap L^p({\mathcal M})$. Given a separating isometry $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$, we show that $T$ is $S^1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\not=2$, the above holds true if and only if $T$ is completely contractive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信