各种吸附剂对重金属的吸附动力学和等温线模型综述

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Jianlong Wang, X. Guo
{"title":"各种吸附剂对重金属的吸附动力学和等温线模型综述","authors":"Jianlong Wang, X. Guo","doi":"10.1080/10643389.2023.2221157","DOIUrl":null,"url":null,"abstract":"Abstract Heavy metal pollution has become one of the most severe environmental issues. Adsorption is an effective method for removing heavy metals from aquatic environments. The adsorption isotherm and kinetics models can provide information on the adsorption process, maximal adsorption capacity, and mass transfer steps, which are essential to evaluate the performance of an adsorbent and to design an adsorption system. In this review, the adsorption kinetics and isotherms of heavy metals by various adsorbents were summarized and discussed in depth. First, the sources of heavy metal pollution and the adsorption technology to remove heavy metals were reviewed. The adsorption capacity of Cu, Cd, Zn, Ni, Cr, As, Fe, Hg, Co, Sr, and Cs by biosorbents (e.g. algae, agriculture waste biochar/activated carbon, and bacteria) and by abiotic adsorbents (e.g. metal–organic frameworks (MOFs), microtubes, polymers, clays, minerals, and coal) were systematically summarized. Second, the origins, basic assumptions, importance, physical meanings, and applications of the adsorption kinetics and isotherm models were discussed in depth. Third, the methods for selecting adsorption models in different conditions were explained, and the statistical parameters which can be applied to evaluate the performance of the models were illustrated. Finally, two Excel sheets are provided for solving the adsorption models, which are available in Supplementary Information. This review article will deepen the understanding of the interaction between heavy metals and adsorbents and facilitate the development of adsorptive technology for heavy metal removal from water and wastewater.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1837 - 1865"},"PeriodicalIF":11.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview\",\"authors\":\"Jianlong Wang, X. Guo\",\"doi\":\"10.1080/10643389.2023.2221157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Heavy metal pollution has become one of the most severe environmental issues. Adsorption is an effective method for removing heavy metals from aquatic environments. The adsorption isotherm and kinetics models can provide information on the adsorption process, maximal adsorption capacity, and mass transfer steps, which are essential to evaluate the performance of an adsorbent and to design an adsorption system. In this review, the adsorption kinetics and isotherms of heavy metals by various adsorbents were summarized and discussed in depth. First, the sources of heavy metal pollution and the adsorption technology to remove heavy metals were reviewed. The adsorption capacity of Cu, Cd, Zn, Ni, Cr, As, Fe, Hg, Co, Sr, and Cs by biosorbents (e.g. algae, agriculture waste biochar/activated carbon, and bacteria) and by abiotic adsorbents (e.g. metal–organic frameworks (MOFs), microtubes, polymers, clays, minerals, and coal) were systematically summarized. Second, the origins, basic assumptions, importance, physical meanings, and applications of the adsorption kinetics and isotherm models were discussed in depth. Third, the methods for selecting adsorption models in different conditions were explained, and the statistical parameters which can be applied to evaluate the performance of the models were illustrated. Finally, two Excel sheets are provided for solving the adsorption models, which are available in Supplementary Information. This review article will deepen the understanding of the interaction between heavy metals and adsorbents and facilitate the development of adsorptive technology for heavy metal removal from water and wastewater.\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"53 1\",\"pages\":\"1837 - 1865\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2023.2221157\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2221157","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 9

摘要

摘要重金属污染已成为最严重的环境问题之一。吸附是去除水生环境中重金属的有效方法。吸附等温线和动力学模型可以提供关于吸附过程、最大吸附容量和传质步骤的信息,这对于评估吸附剂的性能和设计吸附系统至关重要。本文对各种吸附剂对重金属的吸附动力学和等温线进行了综述和深入讨论。首先,综述了重金属污染的来源和吸附去除重金属的技术。系统总结了生物吸附剂(如藻类、农业废弃物生物炭/活性炭和细菌)和非生物吸附剂,如金属-有机框架(MOFs)、微管、聚合物、粘土、矿物和煤)对Cu、Cd、Zn、Ni、Cr、As、Fe、Hg、Co、Sr和Cs的吸附能力。其次,深入讨论了吸附动力学和等温线模型的起源、基本假设、重要性、物理意义和应用。第三,解释了在不同条件下选择吸附模型的方法,并说明了可用于评估模型性能的统计参数。最后,提供了两张Excel表来求解吸附模型,可在补充信息中获得。这篇综述文章将加深对重金属与吸附剂相互作用的理解,并有助于开发从水中和废水中去除重金属的吸附技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview
Abstract Heavy metal pollution has become one of the most severe environmental issues. Adsorption is an effective method for removing heavy metals from aquatic environments. The adsorption isotherm and kinetics models can provide information on the adsorption process, maximal adsorption capacity, and mass transfer steps, which are essential to evaluate the performance of an adsorbent and to design an adsorption system. In this review, the adsorption kinetics and isotherms of heavy metals by various adsorbents were summarized and discussed in depth. First, the sources of heavy metal pollution and the adsorption technology to remove heavy metals were reviewed. The adsorption capacity of Cu, Cd, Zn, Ni, Cr, As, Fe, Hg, Co, Sr, and Cs by biosorbents (e.g. algae, agriculture waste biochar/activated carbon, and bacteria) and by abiotic adsorbents (e.g. metal–organic frameworks (MOFs), microtubes, polymers, clays, minerals, and coal) were systematically summarized. Second, the origins, basic assumptions, importance, physical meanings, and applications of the adsorption kinetics and isotherm models were discussed in depth. Third, the methods for selecting adsorption models in different conditions were explained, and the statistical parameters which can be applied to evaluate the performance of the models were illustrated. Finally, two Excel sheets are provided for solving the adsorption models, which are available in Supplementary Information. This review article will deepen the understanding of the interaction between heavy metals and adsorbents and facilitate the development of adsorptive technology for heavy metal removal from water and wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信