Elissa Belluccini, N. Zeater, A. Pietersen, C. D. Eiber, Paul R. Martin
{"title":"狨外侧膝状体核的双眼总和","authors":"Elissa Belluccini, N. Zeater, A. Pietersen, C. D. Eiber, Paul R. Martin","doi":"10.1017/S0952523819000099","DOIUrl":null,"url":null,"abstract":"Abstract In primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN. Here, we aimed to answer this question by making extracellular array electrode recordings targeted to K layers in the marmoset (Callithrix jacchus) LGN, as visual stimuli (flashed 200 ms temporal square-wave pulses or drifting gratings) were presented to each eye independently or to both eyes simultaneously. We found that when the flashed stimulus was presented to both eyes, compared to the dominant eye, the peak firing rate of most cells (61%, 14/23) was reduced. The remainder showed response facilitation (17%) or partial summation (22%). A greater degree of facilitation was seen when the total number of spikes across the stimulus time window (200 ms) rather than peak firing rates was measured. A similar pattern of results was seen for contrast-varying gratings and for small numbers of parvocellular (n = 12) and magnocellular (n = 3) cells recorded. Our findings show that binocular summation in the marmoset LGN is weak and predominantly sublinear in nature.","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"36 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523819000099","citationCount":"6","resultStr":"{\"title\":\"Binocular summation in marmoset lateral geniculate nucleus\",\"authors\":\"Elissa Belluccini, N. Zeater, A. Pietersen, C. D. Eiber, Paul R. Martin\",\"doi\":\"10.1017/S0952523819000099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN. Here, we aimed to answer this question by making extracellular array electrode recordings targeted to K layers in the marmoset (Callithrix jacchus) LGN, as visual stimuli (flashed 200 ms temporal square-wave pulses or drifting gratings) were presented to each eye independently or to both eyes simultaneously. We found that when the flashed stimulus was presented to both eyes, compared to the dominant eye, the peak firing rate of most cells (61%, 14/23) was reduced. The remainder showed response facilitation (17%) or partial summation (22%). A greater degree of facilitation was seen when the total number of spikes across the stimulus time window (200 ms) rather than peak firing rates was measured. A similar pattern of results was seen for contrast-varying gratings and for small numbers of parvocellular (n = 12) and magnocellular (n = 3) cells recorded. Our findings show that binocular summation in the marmoset LGN is weak and predominantly sublinear in nature.\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0952523819000099\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523819000099\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523819000099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Binocular summation in marmoset lateral geniculate nucleus
Abstract In primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN. Here, we aimed to answer this question by making extracellular array electrode recordings targeted to K layers in the marmoset (Callithrix jacchus) LGN, as visual stimuli (flashed 200 ms temporal square-wave pulses or drifting gratings) were presented to each eye independently or to both eyes simultaneously. We found that when the flashed stimulus was presented to both eyes, compared to the dominant eye, the peak firing rate of most cells (61%, 14/23) was reduced. The remainder showed response facilitation (17%) or partial summation (22%). A greater degree of facilitation was seen when the total number of spikes across the stimulus time window (200 ms) rather than peak firing rates was measured. A similar pattern of results was seen for contrast-varying gratings and for small numbers of parvocellular (n = 12) and magnocellular (n = 3) cells recorded. Our findings show that binocular summation in the marmoset LGN is weak and predominantly sublinear in nature.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.