针叶芽分枝单元维管系统的结构完整性

IF 1.1 4区 生物学 Q3 PLANT SCIENCES
A. Banasiak, B. Zagórska-Marek
{"title":"针叶芽分枝单元维管系统的结构完整性","authors":"A. Banasiak, B. Zagórska-Marek","doi":"10.5586/asbp.8915","DOIUrl":null,"url":null,"abstract":"In conifers with spiral phyllotaxis, two numbers: one of the vascular sympodia and the second of cortical resin canals, define the shoot anatomic diameter. This in turn reflects the size and vigor of the apical meristem. Both numbers belong to the mathematical series, associated with the shoot phyllotactic pattern. The number of canals is one step lower in a series than the number of sympodia. The first one, easier to determine, automatically defines the second. Using this protocol and screening the large number of branching shoots of selected conifers, we have discovered strong correlation between orientation of vascular sympodia in the lateral and supporting branches. There was no such correlation with regard to the chiral configurations of phyllotaxis. This finding reveals the presence of special phyllotactic compensation in the case of differences in anatomic diameter of the parental and lateral shoot under the imperative of maintaining the sympodia orientation within one branching unit. Phyllotaxis of the axillary apex is evidently not established at random but adapted to the condition of the subtending axis. The monopodial, regularly branching shoot of conifers is an attractive example of biological system, which is not a sum of independent, iteratively formed units. Rather, it appears to be an entity organized on hierarchically higher level, which emerges from coordination of developmental processes in a population of the units.","PeriodicalId":7157,"journal":{"name":"Acta Societatis Botanicorum Poloniae","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Integrity of Vascular System in Branching Units of Coniferous Shoot\",\"authors\":\"A. Banasiak, B. Zagórska-Marek\",\"doi\":\"10.5586/asbp.8915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In conifers with spiral phyllotaxis, two numbers: one of the vascular sympodia and the second of cortical resin canals, define the shoot anatomic diameter. This in turn reflects the size and vigor of the apical meristem. Both numbers belong to the mathematical series, associated with the shoot phyllotactic pattern. The number of canals is one step lower in a series than the number of sympodia. The first one, easier to determine, automatically defines the second. Using this protocol and screening the large number of branching shoots of selected conifers, we have discovered strong correlation between orientation of vascular sympodia in the lateral and supporting branches. There was no such correlation with regard to the chiral configurations of phyllotaxis. This finding reveals the presence of special phyllotactic compensation in the case of differences in anatomic diameter of the parental and lateral shoot under the imperative of maintaining the sympodia orientation within one branching unit. Phyllotaxis of the axillary apex is evidently not established at random but adapted to the condition of the subtending axis. The monopodial, regularly branching shoot of conifers is an attractive example of biological system, which is not a sum of independent, iteratively formed units. Rather, it appears to be an entity organized on hierarchically higher level, which emerges from coordination of developmental processes in a population of the units.\",\"PeriodicalId\":7157,\"journal\":{\"name\":\"Acta Societatis Botanicorum Poloniae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Societatis Botanicorum Poloniae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5586/asbp.8915\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Societatis Botanicorum Poloniae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5586/asbp.8915","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在具有螺旋叶状排列的针叶树中,两个数:一个维管合叶和第二个皮质树脂管,决定了茎的解剖直径。这反过来反映了顶端分生组织的大小和活力。这两个数字都属于数学序列,与芽的层状排列模式有关。在一个序列中,管的数量比聚孔的数量少一级。第一个更容易确定,它自动定义了第二个。通过对大量针叶树分枝芽的筛选,我们发现了侧枝维管会聚体的方向与支撑枝的方向有很强的相关性。对于叶状排列的手性构型没有这种相关性。这一发现揭示了在维持一个分支单位内的联合体位的必要性下,在亲本和侧枝解剖直径差异的情况下,存在特殊的层状代偿。腋尖的叶分性显然不是随机建立的,而是适应于对轴的条件。针叶树的单足、有规则分支的枝条是生物系统的一个有吸引力的例子,它不是独立的、迭代形成的单位的总和。相反,它似乎是一个在更高层次上组织起来的实体,它来自于单位群体中发展过程的协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Integrity of Vascular System in Branching Units of Coniferous Shoot
In conifers with spiral phyllotaxis, two numbers: one of the vascular sympodia and the second of cortical resin canals, define the shoot anatomic diameter. This in turn reflects the size and vigor of the apical meristem. Both numbers belong to the mathematical series, associated with the shoot phyllotactic pattern. The number of canals is one step lower in a series than the number of sympodia. The first one, easier to determine, automatically defines the second. Using this protocol and screening the large number of branching shoots of selected conifers, we have discovered strong correlation between orientation of vascular sympodia in the lateral and supporting branches. There was no such correlation with regard to the chiral configurations of phyllotaxis. This finding reveals the presence of special phyllotactic compensation in the case of differences in anatomic diameter of the parental and lateral shoot under the imperative of maintaining the sympodia orientation within one branching unit. Phyllotaxis of the axillary apex is evidently not established at random but adapted to the condition of the subtending axis. The monopodial, regularly branching shoot of conifers is an attractive example of biological system, which is not a sum of independent, iteratively formed units. Rather, it appears to be an entity organized on hierarchically higher level, which emerges from coordination of developmental processes in a population of the units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
18
审稿时长
1 months
期刊介绍: The journal has been published since 1923 and offers Open Access publication of original research papers, short communications, and reviews in all areas of plant science, including evolution, ecology, genetics, plant structure and development, physiology and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信