广义施普林格对应的二分上的偏序

IF 0.6 2区 数学 Q3 MATHEMATICS
Jianqiao Xia
{"title":"广义施普林格对应的二分上的偏序","authors":"Jianqiao Xia","doi":"10.4171/JCA/2-3-4","DOIUrl":null,"url":null,"abstract":"In \\cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \\cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/2-3-4","citationCount":"1","resultStr":"{\"title\":\"A partial order on bipartitions from the generalized Springer correspondence\",\"authors\":\"Jianqiao Xia\",\"doi\":\"10.4171/JCA/2-3-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In \\\\cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\\\\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\\\\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \\\\cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/2-3-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/2-3-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/2-3-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在\ cite{Lusztig}中,Lusztigg给出了自旋群中单能类的二分集和集$\mathcal{N}$之间的双射的显式,该双射对自旋群具有不可约局部系统等变,但对特殊正交群不具有等变。集合$\mathcal{N}$具有自然偏序,因此在二分上引发偏序。我们使用在{Lusztig}中给出的显式公式来证明这个关于二分的偏序与Dipper James Murphy的工作中出现的支配序是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A partial order on bipartitions from the generalized Springer correspondence
In \cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信