{"title":"广义施普林格对应的二分上的偏序","authors":"Jianqiao Xia","doi":"10.4171/JCA/2-3-4","DOIUrl":null,"url":null,"abstract":"In \\cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \\cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/JCA/2-3-4","citationCount":"1","resultStr":"{\"title\":\"A partial order on bipartitions from the generalized Springer correspondence\",\"authors\":\"Jianqiao Xia\",\"doi\":\"10.4171/JCA/2-3-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In \\\\cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\\\\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\\\\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \\\\cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/JCA/2-3-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/2-3-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/2-3-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在\ cite{Lusztig}中,Lusztigg给出了自旋群中单能类的二分集和集$\mathcal{N}$之间的双射的显式,该双射对自旋群具有不可约局部系统等变,但对特殊正交群不具有等变。集合$\mathcal{N}$具有自然偏序,因此在二分上引发偏序。我们使用在{Lusztig}中给出的显式公式来证明这个关于二分的偏序与Dipper James Murphy的工作中出现的支配序是相同的。
A partial order on bipartitions from the generalized Springer correspondence
In \cite{Lusztig}, Lusztig gives an explicit formula for the bijection between the set of bipartitions and the set $\mathcal{N}$ of unipotent classes in a spin group which carry irreducible local systems equivariant for the spin group but not equivariant for the special orthogonal group. The set $\mathcal{N}$ has a natural partial order and therefore induces a partial order on bipartitions. We use the explicit formula given in \cite{Lusztig} to prove that this partial order on bipartitions is the same as the dominance order appeared in Dipper-James-Murphy's work.