R. Sakai, K. Uchiyama, Kensuke Fukushima, N. Takahira, K. Yoshida, M. Ujihira
{"title":"全髋关节置换术中固定髋臼杯的锤击声频率分析:临床试验和生物力学研究","authors":"R. Sakai, K. Uchiyama, Kensuke Fukushima, N. Takahira, K. Yoshida, M. Ujihira","doi":"10.4236/JBISE.2021.141003","DOIUrl":null,"url":null,"abstract":"Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"14 1","pages":"14-20"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hammering Sound Frequency Analysis to Fix an Acetabular Cup during Total Hip Arthroplasty: Clinical Trials and Biomechanical Studies\",\"authors\":\"R. Sakai, K. Uchiyama, Kensuke Fukushima, N. Takahira, K. Yoshida, M. Ujihira\",\"doi\":\"10.4236/JBISE.2021.141003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.\",\"PeriodicalId\":64231,\"journal\":{\"name\":\"生物医学工程(英文)\",\"volume\":\"14 1\",\"pages\":\"14-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/JBISE.2021.141003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JBISE.2021.141003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hammering Sound Frequency Analysis to Fix an Acetabular Cup during Total Hip Arthroplasty: Clinical Trials and Biomechanical Studies
Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.