稀疏多项式序列的素数

IF 2.3 1区 数学 Q1 MATHEMATICS
Xiannan Li
{"title":"稀疏多项式序列的素数","authors":"Xiannan Li","doi":"10.1215/00127094-2021-0014","DOIUrl":null,"url":null,"abstract":"A distinguishing feature of certain intractable problems in prime number theory is the sparsity of the underlying sequence. Motivated by the general problem of finding primes in sparse polynomial sequences, we give an estimate for the number of primes of the shape x + 2y where y is small.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prime values of a sparse polynomial sequence\",\"authors\":\"Xiannan Li\",\"doi\":\"10.1215/00127094-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distinguishing feature of certain intractable problems in prime number theory is the sparsity of the underlying sequence. Motivated by the general problem of finding primes in sparse polynomial sequences, we give an estimate for the number of primes of the shape x + 2y where y is small.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2021-0014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

素数理论中某些棘手问题的一个显著特征是底层序列的稀疏性。基于在稀疏多项式序列中寻找素数的一般问题,我们给出了形状为x + 2y且y较小的素数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime values of a sparse polynomial sequence
A distinguishing feature of certain intractable problems in prime number theory is the sparsity of the underlying sequence. Motivated by the general problem of finding primes in sparse polynomial sequences, we give an estimate for the number of primes of the shape x + 2y where y is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信