理想和现实南极地形中亚陆架融化参数化对冰盖退缩的强烈影响

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Constantijn J. Berends, L. Stap, R. V. D. van de Wal
{"title":"理想和现实南极地形中亚陆架融化参数化对冰盖退缩的强烈影响","authors":"Constantijn J. Berends, L. Stap, R. V. D. van de Wal","doi":"10.1017/jog.2023.33","DOIUrl":null,"url":null,"abstract":"\n Future projections of sea-level rise under strong warming scenarios are dominated by mass loss in the marine-grounded sectors of West Antarctica, where thinning shelves as a result of warming oceans can lead to reduced buttressing. This consequently leads to accelerated flow from the upstream grounded ice. However, the relation between warming oceans and increased melt rates under the shelves is very uncertain, especially when interactions with the changing shelf geometry are considered. Here, we compare six widely used, highly parameterised formulations relating sub-shelf melt to thermal forcing. We implemented them in an ice-sheet model, and applied the resulting set-up to an idealised-geometry setting, as well as to the Antarctic ice sheet. In our simulations, the differences in modelled ice-sheet evolution resulting from the choice of parameterisation, as well as the choice of numerical scheme used to apply sub-shelf melt near the grounding line, generally are larger than differences from ice-dynamical processes such as basal sliding, as well as uncertainties from the forcing scenario of the model providing the ocean forcing. This holds for the idealised-geometry experiments as well as for the experiments using a realistic Antarctic topography.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography\",\"authors\":\"Constantijn J. Berends, L. Stap, R. V. D. van de Wal\",\"doi\":\"10.1017/jog.2023.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Future projections of sea-level rise under strong warming scenarios are dominated by mass loss in the marine-grounded sectors of West Antarctica, where thinning shelves as a result of warming oceans can lead to reduced buttressing. This consequently leads to accelerated flow from the upstream grounded ice. However, the relation between warming oceans and increased melt rates under the shelves is very uncertain, especially when interactions with the changing shelf geometry are considered. Here, we compare six widely used, highly parameterised formulations relating sub-shelf melt to thermal forcing. We implemented them in an ice-sheet model, and applied the resulting set-up to an idealised-geometry setting, as well as to the Antarctic ice sheet. In our simulations, the differences in modelled ice-sheet evolution resulting from the choice of parameterisation, as well as the choice of numerical scheme used to apply sub-shelf melt near the grounding line, generally are larger than differences from ice-dynamical processes such as basal sliding, as well as uncertainties from the forcing scenario of the model providing the ocean forcing. This holds for the idealised-geometry experiments as well as for the experiments using a realistic Antarctic topography.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.33\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.33","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

在强变暖情景下对海平面上升的未来预测主要是由西南极洲陆基部分的大量损失所主导,在那里,由于海洋变暖,冰架变薄可能导致支撑作用减少。这就导致了上游接地冰的加速流动。然而,海洋变暖与大陆架下融化速度增加之间的关系是非常不确定的,特别是考虑到与大陆架几何形状变化的相互作用。在这里,我们比较了六种广泛使用的、高度参数化的关于亚大陆架融化与热强迫的公式。我们在冰盖模型中实现了它们,并将结果设置应用于理想的几何设置,以及南极冰盖。在我们的模拟中,由于参数化的选择,以及用于应用接地线附近的亚大陆架融化的数值方案的选择,导致的模拟冰盖演变的差异通常大于冰动力过程(如基底滑动)的差异,以及来自提供海洋强迫的模式的强迫情景的不确定性。这既适用于理想几何实验,也适用于使用真实南极地形的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography
Future projections of sea-level rise under strong warming scenarios are dominated by mass loss in the marine-grounded sectors of West Antarctica, where thinning shelves as a result of warming oceans can lead to reduced buttressing. This consequently leads to accelerated flow from the upstream grounded ice. However, the relation between warming oceans and increased melt rates under the shelves is very uncertain, especially when interactions with the changing shelf geometry are considered. Here, we compare six widely used, highly parameterised formulations relating sub-shelf melt to thermal forcing. We implemented them in an ice-sheet model, and applied the resulting set-up to an idealised-geometry setting, as well as to the Antarctic ice sheet. In our simulations, the differences in modelled ice-sheet evolution resulting from the choice of parameterisation, as well as the choice of numerical scheme used to apply sub-shelf melt near the grounding line, generally are larger than differences from ice-dynamical processes such as basal sliding, as well as uncertainties from the forcing scenario of the model providing the ocean forcing. This holds for the idealised-geometry experiments as well as for the experiments using a realistic Antarctic topography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信