非平凡各向同性群轨道的对称李雅普诺夫中心定理

IF 1.5 3区 数学 Q1 MATHEMATICS
Marta Kowalczyk, Ernesto P'erez-Chavela, S. Rybicki
{"title":"非平凡各向同性群轨道的对称李雅普诺夫中心定理","authors":"Marta Kowalczyk, Ernesto P'erez-Chavela, S. Rybicki","doi":"10.57262/ade/1580958057","DOIUrl":null,"url":null,"abstract":"In this article we prove two versions of the Liapunov center theorem for symmetric potentials. We consider a~second order autonomous system $\\ddot q(t)=-\\nabla U(q(t))$ in the presence of symmetries of a compact Lie group $\\Gamma$ acting linearly on $\\mathbb{R}^n.$ We look for non-stationary periodic solutions of this system in a~neighborhood of an orbit of critical points of the potential $U.$","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetric Lyapunov center theorem for orbit with nontrivial isotropy group\",\"authors\":\"Marta Kowalczyk, Ernesto P'erez-Chavela, S. Rybicki\",\"doi\":\"10.57262/ade/1580958057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove two versions of the Liapunov center theorem for symmetric potentials. We consider a~second order autonomous system $\\\\ddot q(t)=-\\\\nabla U(q(t))$ in the presence of symmetries of a compact Lie group $\\\\Gamma$ acting linearly on $\\\\mathbb{R}^n.$ We look for non-stationary periodic solutions of this system in a~neighborhood of an orbit of critical points of the potential $U.$\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade/1580958057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1580958057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了对称势的李亚普诺夫中心定理的两个版本。我们考虑一个~二阶自治系统$\ddot q(t)=-\nabla U(q(t我们在潜在$U的临界点轨道的~邻域中寻找该系统的非平稳周期解$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric Lyapunov center theorem for orbit with nontrivial isotropy group
In this article we prove two versions of the Liapunov center theorem for symmetric potentials. We consider a~second order autonomous system $\ddot q(t)=-\nabla U(q(t))$ in the presence of symmetries of a compact Lie group $\Gamma$ acting linearly on $\mathbb{R}^n.$ We look for non-stationary periodic solutions of this system in a~neighborhood of an orbit of critical points of the potential $U.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信