{"title":"ace抑制肽的生物制药潜力","authors":"Praveen P. Balgir, M. Sharma","doi":"10.4172/JPB.1000437","DOIUrl":null,"url":null,"abstract":"Bioactive peptides are defined as peptides with hormone or drug like activity that bind to specific receptors leading to induction of physiological responses with a positive impact on body functions and health. Though pharmaceuticals are available, the responses to these drugs show variability and outright toxicity in some patients. Peptides of food origin have been reported to play an important role in the prevention and treatment of hypertension therefore researchers are extensively exploring food based strategies to produce functional food products with antihypertensive properties. These peptides act by intervening in different biochemical pathways that control blood pressure, fluid and electrolyte balance. Some targeted pathways are the renin-angiotensin system, kinin-kallikrein system, sympathetic nervous system, ion regulation system, sodium-transport system and the endothelin-converting enzyme system. These peptides are more reactive than their native proteins and have been produced by fermentation and enzymatic hydrolysis of food sources. Recombinant DNA technology has opened more avenues of production of antihypertensive peptides. In the present work antihypertensive Angiotensin-Converting-Enzyme (ACE) inhibitor peptides (2-5 in length and from food source) were selected from BIOPEP database and validated in silico for anti-hypertensive activity using web-based software Molsoft and Molinspiration. An overall drug-likeness score for the selected peptides was calculated using Molsoft. The more positive the value of drug-likeness scores the more active the peptide is. The molecular properties like hydrophobicity, electron distribution, hydrogen bonding characteristics and molecular size of active peptides were predicted using Molinspiration. In comparison with others only eight peptides WP, PLW, YPR, LPP, FP, LW, YW, RW showed positive drug-likeness score and bioactivity score (not violating Lipinski’s rule).","PeriodicalId":73911,"journal":{"name":"Journal of proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/JPB.1000437","citationCount":"7","resultStr":"{\"title\":\"Biopharmaceutical Potential of ACE-Inhibitory Peptides\",\"authors\":\"Praveen P. Balgir, M. Sharma\",\"doi\":\"10.4172/JPB.1000437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioactive peptides are defined as peptides with hormone or drug like activity that bind to specific receptors leading to induction of physiological responses with a positive impact on body functions and health. Though pharmaceuticals are available, the responses to these drugs show variability and outright toxicity in some patients. Peptides of food origin have been reported to play an important role in the prevention and treatment of hypertension therefore researchers are extensively exploring food based strategies to produce functional food products with antihypertensive properties. These peptides act by intervening in different biochemical pathways that control blood pressure, fluid and electrolyte balance. Some targeted pathways are the renin-angiotensin system, kinin-kallikrein system, sympathetic nervous system, ion regulation system, sodium-transport system and the endothelin-converting enzyme system. These peptides are more reactive than their native proteins and have been produced by fermentation and enzymatic hydrolysis of food sources. Recombinant DNA technology has opened more avenues of production of antihypertensive peptides. In the present work antihypertensive Angiotensin-Converting-Enzyme (ACE) inhibitor peptides (2-5 in length and from food source) were selected from BIOPEP database and validated in silico for anti-hypertensive activity using web-based software Molsoft and Molinspiration. An overall drug-likeness score for the selected peptides was calculated using Molsoft. The more positive the value of drug-likeness scores the more active the peptide is. The molecular properties like hydrophobicity, electron distribution, hydrogen bonding characteristics and molecular size of active peptides were predicted using Molinspiration. In comparison with others only eight peptides WP, PLW, YPR, LPP, FP, LW, YW, RW showed positive drug-likeness score and bioactivity score (not violating Lipinski’s rule).\",\"PeriodicalId\":73911,\"journal\":{\"name\":\"Journal of proteomics & bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/JPB.1000437\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/JPB.1000437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/JPB.1000437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biopharmaceutical Potential of ACE-Inhibitory Peptides
Bioactive peptides are defined as peptides with hormone or drug like activity that bind to specific receptors leading to induction of physiological responses with a positive impact on body functions and health. Though pharmaceuticals are available, the responses to these drugs show variability and outright toxicity in some patients. Peptides of food origin have been reported to play an important role in the prevention and treatment of hypertension therefore researchers are extensively exploring food based strategies to produce functional food products with antihypertensive properties. These peptides act by intervening in different biochemical pathways that control blood pressure, fluid and electrolyte balance. Some targeted pathways are the renin-angiotensin system, kinin-kallikrein system, sympathetic nervous system, ion regulation system, sodium-transport system and the endothelin-converting enzyme system. These peptides are more reactive than their native proteins and have been produced by fermentation and enzymatic hydrolysis of food sources. Recombinant DNA technology has opened more avenues of production of antihypertensive peptides. In the present work antihypertensive Angiotensin-Converting-Enzyme (ACE) inhibitor peptides (2-5 in length and from food source) were selected from BIOPEP database and validated in silico for anti-hypertensive activity using web-based software Molsoft and Molinspiration. An overall drug-likeness score for the selected peptides was calculated using Molsoft. The more positive the value of drug-likeness scores the more active the peptide is. The molecular properties like hydrophobicity, electron distribution, hydrogen bonding characteristics and molecular size of active peptides were predicted using Molinspiration. In comparison with others only eight peptides WP, PLW, YPR, LPP, FP, LW, YW, RW showed positive drug-likeness score and bioactivity score (not violating Lipinski’s rule).