{"title":"特征度的二部除数图","authors":"S. A. Moosavi","doi":"10.22108/IJGT.2017.9852","DOIUrl":null,"url":null,"abstract":"The concept of the bipartite divisor graph for integer subsets has been considered in [M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets, Graphs Combin., 26 (2010) 95--105.]. In this paper, we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph. We show that if $G$ is a solvable group, then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group, then it has at most $3$ connected components. We also show that the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On bipartite divisor graph for character degrees\",\"authors\":\"S. A. Moosavi\",\"doi\":\"10.22108/IJGT.2017.9852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of the bipartite divisor graph for integer subsets has been considered in [M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets, Graphs Combin., 26 (2010) 95--105.]. In this paper, we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph. We show that if $G$ is a solvable group, then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group, then it has at most $3$ connected components. We also show that the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2017.9852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.9852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The concept of the bipartite divisor graph for integer subsets has been considered in [M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets, Graphs Combin., 26 (2010) 95--105.]. In this paper, we will consider this graph for the set of character degrees of a finite group $G$ and obtain some properties of this graph. We show that if $G$ is a solvable group, then the number of connected components of this graph is at most $2$ and if $G$ is a non-solvable group, then it has at most $3$ connected components. We also show that the diameter of a connected bipartite divisor graph is bounded by $7$ and obtain some properties of groups whose graphs are complete bipartite graphs.
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.