微分形式和电流的Sobolev Poincaré不等式

IF 0.2 Q4 MATHEMATICS
A. Baldi
{"title":"微分形式和电流的Sobolev Poincaré不等式","authors":"A. Baldi","doi":"10.6092/ISSN.2240-2829/10361","DOIUrl":null,"url":null,"abstract":"In this note we collect some results in R^n about (p,q) Poincare and Sobolev inequalities for differential forms obtained in a joint research with Franchi and Pansu. In particular, we focus to the case p=1. From the geometric point of view, Poincare and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. As an application of the results obtained in the case p=1 we obtain  Poincare and Sobolev inequalities for Euclidean currents.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"14-27"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev-Poincaré inequalities for differential forms and currents\",\"authors\":\"A. Baldi\",\"doi\":\"10.6092/ISSN.2240-2829/10361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we collect some results in R^n about (p,q) Poincare and Sobolev inequalities for differential forms obtained in a joint research with Franchi and Pansu. In particular, we focus to the case p=1. From the geometric point of view, Poincare and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. As an application of the results obtained in the case p=1 we obtain  Poincare and Sobolev inequalities for Euclidean currents.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"10 1\",\"pages\":\"14-27\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们收集了在与Franchi和Pansu的联合研究中获得的关于微分形式的(p,q)Poincare和Sobolev不等式的R^n中的一些结果。特别是,我们关注的是p=1的情况。从几何角度来看,微分形式的Poincare和Sobolev不等式提供了上同调消失的定量公式。作为在p=1的情况下获得的结果的应用,我们获得了欧几里得电流的Poincare和Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev-Poincaré inequalities for differential forms and currents
In this note we collect some results in R^n about (p,q) Poincare and Sobolev inequalities for differential forms obtained in a joint research with Franchi and Pansu. In particular, we focus to the case p=1. From the geometric point of view, Poincare and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. As an application of the results obtained in the case p=1 we obtain  Poincare and Sobolev inequalities for Euclidean currents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信