超薄双曲板中激发的双曲体积和表面声子极化子:色散与拓扑的联系

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Xiaohu Wu, C. Fu
{"title":"超薄双曲板中激发的双曲体积和表面声子极化子:色散与拓扑的联系","authors":"Xiaohu Wu, C. Fu","doi":"10.1080/15567265.2021.1883165","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hyperbolic volume and surface phonon polaritons have been studied extensively for enhancing the near-field radiative heat transfer (NFRHT) between hyperbolic materials. Hyperbolic volume phonon polaritons (HVPPs) describe propagating electromagnetic waves in hyperbolic materials while evanescent waves are required for excitation of hyperbolic surface phonon polaritons (HSPPs). Therefore, the dispersion relations of HVPPs and HSPPs are distinct. Here we study the interaction of HVPPs and HSPPs within the context of NFRHT between hyperbolic materials. We find that the dispersion curves of HVPPs and HSPPs in an ultrathin hyperbolic slab can connect smoothly. Particularly, we find that the topology of HVPPs can be convex and flat, rather than concave, and can be controlled by tuning the thickness of the hyperbolic slab, which has not been reported in published literature. We believe our findings presented here may help to deepen our understanding on the interaction between HVPPs and HSPPs, as well as the knowledge on the topology of HVPPs in hyperbolic materials.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"25 1","pages":"64 - 71"},"PeriodicalIF":2.7000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2021.1883165","citationCount":"14","resultStr":"{\"title\":\"Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology\",\"authors\":\"Xiaohu Wu, C. Fu\",\"doi\":\"10.1080/15567265.2021.1883165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Hyperbolic volume and surface phonon polaritons have been studied extensively for enhancing the near-field radiative heat transfer (NFRHT) between hyperbolic materials. Hyperbolic volume phonon polaritons (HVPPs) describe propagating electromagnetic waves in hyperbolic materials while evanescent waves are required for excitation of hyperbolic surface phonon polaritons (HSPPs). Therefore, the dispersion relations of HVPPs and HSPPs are distinct. Here we study the interaction of HVPPs and HSPPs within the context of NFRHT between hyperbolic materials. We find that the dispersion curves of HVPPs and HSPPs in an ultrathin hyperbolic slab can connect smoothly. Particularly, we find that the topology of HVPPs can be convex and flat, rather than concave, and can be controlled by tuning the thickness of the hyperbolic slab, which has not been reported in published literature. We believe our findings presented here may help to deepen our understanding on the interaction between HVPPs and HSPPs, as well as the knowledge on the topology of HVPPs in hyperbolic materials.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"25 1\",\"pages\":\"64 - 71\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2021.1883165\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2021.1883165\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2021.1883165","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14

摘要

摘要为了增强双曲材料之间的近场辐射传热,人们对双曲体积和表面声子极性子进行了广泛的研究。双曲体积声子极化子(HVPP)描述了双曲材料中传播的电磁波,而双曲表面声子极化子的激发需要倏逝波。因此,HVPP和HSPP的分散关系是不同的。在这里,我们研究了双曲面材料之间NFRHT背景下HVPP和HSPP的相互作用。我们发现HVPP和HSPP在超薄双曲板中的色散曲线可以平滑连接。特别是,我们发现HVPP的拓扑结构可以是凸的和平的,而不是凹的,并且可以通过调整双曲板的厚度来控制,这在已发表的文献中没有报道。我们相信,我们在这里的发现可能有助于加深我们对HVPP和HSPP之间相互作用的理解,以及对双曲材料中HVPP拓扑结构的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology
ABSTRACT Hyperbolic volume and surface phonon polaritons have been studied extensively for enhancing the near-field radiative heat transfer (NFRHT) between hyperbolic materials. Hyperbolic volume phonon polaritons (HVPPs) describe propagating electromagnetic waves in hyperbolic materials while evanescent waves are required for excitation of hyperbolic surface phonon polaritons (HSPPs). Therefore, the dispersion relations of HVPPs and HSPPs are distinct. Here we study the interaction of HVPPs and HSPPs within the context of NFRHT between hyperbolic materials. We find that the dispersion curves of HVPPs and HSPPs in an ultrathin hyperbolic slab can connect smoothly. Particularly, we find that the topology of HVPPs can be convex and flat, rather than concave, and can be controlled by tuning the thickness of the hyperbolic slab, which has not been reported in published literature. We believe our findings presented here may help to deepen our understanding on the interaction between HVPPs and HSPPs, as well as the knowledge on the topology of HVPPs in hyperbolic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信