正规变种上的代数群作用

Q2 Mathematics
M. Brion
{"title":"正规变种上的代数群作用","authors":"M. Brion","doi":"10.1090/MOSC/263","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected algebraic $k$-group acting on a normal $k$-variety, where $k$ is a field. We show that $X$ is covered by open $G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $G$-linearized vector bundle on an abelian variety, quotient of $G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"78 1","pages":"85-107"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/263","citationCount":"19","resultStr":"{\"title\":\"Algebraic group actions on normal varieties\",\"authors\":\"M. Brion\",\"doi\":\"10.1090/MOSC/263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected algebraic $k$-group acting on a normal $k$-variety, where $k$ is a field. We show that $X$ is covered by open $G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $G$-linearized vector bundle on an abelian variety, quotient of $G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"78 1\",\"pages\":\"85-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/MOSC/263\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MOSC/263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19

摘要

设$G$是作用于正规$k$-变种上的连通代数$k$群,其中$k$是一个域。我们证明了$X$是由开放的$G$稳定的拟射影子变种覆盖的;此外,任何这样的子变种都允许等变嵌入到阿贝尔变种上的$G$线性化向量丛的投影中,商为$G$。这推广了Sumihiro关于光滑连通仿射代数群作用的一个经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic group actions on normal varieties
Let $G$ be a connected algebraic $k$-group acting on a normal $k$-variety, where $k$ is a field. We show that $X$ is covered by open $G$-stable quasi-projective subvarieties; moreover, any such subvariety admits an equivariant embedding into the projectivization of a $G$-linearized vector bundle on an abelian variety, quotient of $G$. This generalizes a classical result of Sumihiro for actions of smooth connected affine algebraic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信