{"title":"三种纳米颗粒对不同粒级稻瘟病的杀虫效果","authors":"Ghadeer G. Raduw, A. Mohammed","doi":"10.3954/1523-5475-36.1.90","DOIUrl":null,"url":null,"abstract":"ABSTRACT The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is an important pest of stored wheat worldwide. Nanoparticles have become one of the most promising new tools for insect pest management in recent years. This laboratory study was conducted to evaluate the insecticidal efficacy of three commercially available nanoparticles [silicon oxide (SNPs), aluminium oxide (ANPs) and zinc oxide (ZNPs)] against T. granarium at 50, 100 and 200 mg kg–1. The efficacy of SNPs, ANPs and ZNPs on wheat, barley, rice, white maize and yellow maize was assessed after 1, 3, 5 and 7 d of exposure. Corrected mortality of T. granarium was significantly affected by nanoparticle types, application rates, grain types, and the insect developmental stages. SNPs and ANPs were more effective than ZNPs, where 100% mortality of second instars was obtained at the highest concentration. Mortality of second instars on wheat treated with SNPs, ANPs or ZNPs at the rate of 200 mg kg–1 was significantly higher than other concentrations. Insecticidal efficacy of all nanoparticles at the rate of 200 mg kg–1 against second instars was significantly higher on barley and wheat than those on rice and maize. First, second and third instars exposed to all nanoparticle types at the rate of 200 mg kg–1 were more susceptible than fourth and fifth instars and adults. Female adults exposed to wheat treated with all nanoparticles at the rate of 200 mg kg–1 stopped reproduction completely. The results demonstrate that commercially available SNPs and ANPs can be used as eco-friendly management strategy of T. granarium; however, further studies under commercial storage conditions are required.","PeriodicalId":50257,"journal":{"name":"The Journal of Agricultural and Urban Entomology","volume":"36 1","pages":"90 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Insecticidal Efficacy of Three Nanoparticles for the Control of Khapra Beetle (Trogoderma granarium) on Different Grains\",\"authors\":\"Ghadeer G. Raduw, A. Mohammed\",\"doi\":\"10.3954/1523-5475-36.1.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is an important pest of stored wheat worldwide. Nanoparticles have become one of the most promising new tools for insect pest management in recent years. This laboratory study was conducted to evaluate the insecticidal efficacy of three commercially available nanoparticles [silicon oxide (SNPs), aluminium oxide (ANPs) and zinc oxide (ZNPs)] against T. granarium at 50, 100 and 200 mg kg–1. The efficacy of SNPs, ANPs and ZNPs on wheat, barley, rice, white maize and yellow maize was assessed after 1, 3, 5 and 7 d of exposure. Corrected mortality of T. granarium was significantly affected by nanoparticle types, application rates, grain types, and the insect developmental stages. SNPs and ANPs were more effective than ZNPs, where 100% mortality of second instars was obtained at the highest concentration. Mortality of second instars on wheat treated with SNPs, ANPs or ZNPs at the rate of 200 mg kg–1 was significantly higher than other concentrations. Insecticidal efficacy of all nanoparticles at the rate of 200 mg kg–1 against second instars was significantly higher on barley and wheat than those on rice and maize. First, second and third instars exposed to all nanoparticle types at the rate of 200 mg kg–1 were more susceptible than fourth and fifth instars and adults. Female adults exposed to wheat treated with all nanoparticles at the rate of 200 mg kg–1 stopped reproduction completely. The results demonstrate that commercially available SNPs and ANPs can be used as eco-friendly management strategy of T. granarium; however, further studies under commercial storage conditions are required.\",\"PeriodicalId\":50257,\"journal\":{\"name\":\"The Journal of Agricultural and Urban Entomology\",\"volume\":\"36 1\",\"pages\":\"90 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Agricultural and Urban Entomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3954/1523-5475-36.1.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Agricultural and Urban Entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3954/1523-5475-36.1.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Insecticidal Efficacy of Three Nanoparticles for the Control of Khapra Beetle (Trogoderma granarium) on Different Grains
ABSTRACT The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is an important pest of stored wheat worldwide. Nanoparticles have become one of the most promising new tools for insect pest management in recent years. This laboratory study was conducted to evaluate the insecticidal efficacy of three commercially available nanoparticles [silicon oxide (SNPs), aluminium oxide (ANPs) and zinc oxide (ZNPs)] against T. granarium at 50, 100 and 200 mg kg–1. The efficacy of SNPs, ANPs and ZNPs on wheat, barley, rice, white maize and yellow maize was assessed after 1, 3, 5 and 7 d of exposure. Corrected mortality of T. granarium was significantly affected by nanoparticle types, application rates, grain types, and the insect developmental stages. SNPs and ANPs were more effective than ZNPs, where 100% mortality of second instars was obtained at the highest concentration. Mortality of second instars on wheat treated with SNPs, ANPs or ZNPs at the rate of 200 mg kg–1 was significantly higher than other concentrations. Insecticidal efficacy of all nanoparticles at the rate of 200 mg kg–1 against second instars was significantly higher on barley and wheat than those on rice and maize. First, second and third instars exposed to all nanoparticle types at the rate of 200 mg kg–1 were more susceptible than fourth and fifth instars and adults. Female adults exposed to wheat treated with all nanoparticles at the rate of 200 mg kg–1 stopped reproduction completely. The results demonstrate that commercially available SNPs and ANPs can be used as eco-friendly management strategy of T. granarium; however, further studies under commercial storage conditions are required.
期刊介绍:
The Journal of Agricultural and Urban Entomology (JAUE) (Journal of Agricultural Entomology, Jan 1984 - Oct 1998 volumes 1-15) is published under the auspices of the South Carolina Entomological Society (SCES). The Journal publishes contributions of original research concerning insects and other arthropods of agricultural and urban importance to include those affecting humans, livestock, poultry, and wildlife. JAUE is particularly dedicated to the publication of articles and notes pertaining to applied entomology, although it will accept suitable contributions of a fundamental nature related to agricultural and urban entomology.