冷却速率对AM4.5kd (VAL10)合金组织形成的影响

А. Prіgunova, Y. Zhydkov, V. D. Babiuk, А. G. Borisov, L. Shenevidko
{"title":"冷却速率对AM4.5kd (VAL10)合金组织形成的影响","authors":"А. Prіgunova, Y. Zhydkov, V. D. Babiuk, А. G. Borisov, L. Shenevidko","doi":"10.15407/mom2022.01.029","DOIUrl":null,"url":null,"abstract":"High-strength cast aluminum alloy AM4.5Kd (VAL10) belongs to the Al-Cu system and due to the combination of a high level of physical, mechanical and operational properties, is widely used in high-tech industries and technology: aviation, space, shipbuilding, transport. Products from the alloy AM4.5Kd (VAL10) are obtained by all known methods of casting (in sand molds, in a chill mold, under pressure), differing in cooling rates. This has a significant effect on the structure and properties of the alloy, not only in the as-cast, but also in the heat-treated state, which determines the relevance of scientific work in this direction. The article presents the results of a study of the microstructure of the AM4.5Kd (VAL10) alloy with a change in its cooling rate during the curing process (Vcool.) from 0.4 °C/s to ≥ 105 °C/s. The alloy was melted, refined and, at a temperature of 750°C, poured into molds with different heat sinks. It is shown that an increase in the cooling rate during the hardening process leads to a decrease in the size of structural components, in particular, aluminum (Alα) solid solution crystals and to an increase in their microhardness. At a cooling rate of 0.4 °C/s, corresponding to solidification in a sandy form, primary Alα crystals are formed in the form of coarsened dendrites with an average size slightly larger than 800 μm, along the boundaries of which a fine network of particles of Al3Ti, Al12Mn2Cu phases and Alα+СuАl2 eutectics is formed. With an increase in the cooling rate, the branching of the dendrites and the volume fraction of the finely differentiated eutectic increase, the cooperative growth of phases in which is maintained throughout the entire range of cooling rates studied. The value of the dendritic parameter of the solid solution of aluminum regularly decreases with a practically unchanged shape factor of its crystals, which is almost up to Vcool. ≈ 105 °C/s is from 1.45 to 3.15. A similar dependence of the change in the macrograin size on the cooling rate was not found. Its anomalous growth was recorded at a cooling rate of ≥ 120 °C/s, at which the macrograin size is commensurate with the alloy cooled at a rate of 0.4 °C/s. In the work, such a discrepancy is explained from the standpoint of the theory of the nucleus and growth of crystals. Keywords: cooling rate, microstructure, AM4.5Kd (VAL10), structure formation, macrograin size.","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of the cooling rate on the structure formation of the AM4.5kd (VAL10) alloy\",\"authors\":\"А. Prіgunova, Y. Zhydkov, V. D. Babiuk, А. G. Borisov, L. Shenevidko\",\"doi\":\"10.15407/mom2022.01.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-strength cast aluminum alloy AM4.5Kd (VAL10) belongs to the Al-Cu system and due to the combination of a high level of physical, mechanical and operational properties, is widely used in high-tech industries and technology: aviation, space, shipbuilding, transport. Products from the alloy AM4.5Kd (VAL10) are obtained by all known methods of casting (in sand molds, in a chill mold, under pressure), differing in cooling rates. This has a significant effect on the structure and properties of the alloy, not only in the as-cast, but also in the heat-treated state, which determines the relevance of scientific work in this direction. The article presents the results of a study of the microstructure of the AM4.5Kd (VAL10) alloy with a change in its cooling rate during the curing process (Vcool.) from 0.4 °C/s to ≥ 105 °C/s. The alloy was melted, refined and, at a temperature of 750°C, poured into molds with different heat sinks. It is shown that an increase in the cooling rate during the hardening process leads to a decrease in the size of structural components, in particular, aluminum (Alα) solid solution crystals and to an increase in their microhardness. At a cooling rate of 0.4 °C/s, corresponding to solidification in a sandy form, primary Alα crystals are formed in the form of coarsened dendrites with an average size slightly larger than 800 μm, along the boundaries of which a fine network of particles of Al3Ti, Al12Mn2Cu phases and Alα+СuАl2 eutectics is formed. With an increase in the cooling rate, the branching of the dendrites and the volume fraction of the finely differentiated eutectic increase, the cooperative growth of phases in which is maintained throughout the entire range of cooling rates studied. The value of the dendritic parameter of the solid solution of aluminum regularly decreases with a practically unchanged shape factor of its crystals, which is almost up to Vcool. ≈ 105 °C/s is from 1.45 to 3.15. A similar dependence of the change in the macrograin size on the cooling rate was not found. Its anomalous growth was recorded at a cooling rate of ≥ 120 °C/s, at which the macrograin size is commensurate with the alloy cooled at a rate of 0.4 °C/s. In the work, such a discrepancy is explained from the standpoint of the theory of the nucleus and growth of crystals. Keywords: cooling rate, microstructure, AM4.5Kd (VAL10), structure formation, macrograin size.\",\"PeriodicalId\":33600,\"journal\":{\"name\":\"Metaloznavstvo ta obrobka metaliv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaloznavstvo ta obrobka metaliv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/mom2022.01.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2022.01.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高强度铸造铝合金AM4.5Kd(VAL10)属于Al-Cu系,由于其结合了高水平的物理、机械和操作性能,广泛应用于航空、航天、造船、运输等高科技行业和技术。合金AM4.5Kd(VAL10)的产品是通过所有已知的铸造方法(在砂型中、在冷压模中、在压力下)获得的,冷却速率不同。这不仅在铸态,而且在热处理状态下对合金的结构和性能都有重大影响,这决定了科学工作在这一方向上的相关性。本文介绍了AM4.5Kd(VAL10)合金在固化过程中冷却速率从0.4°C/s变化到≥105°C/s的微观结构研究结果。合金被熔化、精炼,并在750°C的温度下倒入具有不同散热器的模具中。研究表明,在硬化过程中,冷却速率的增加导致结构部件,特别是铝(Alα)固溶体晶体的尺寸减小,并导致其显微硬度增加。在0.4°C/s的冷却速率下,对应于沙状凝固,初级Alα晶体以平均尺寸略大于800μm的粗化枝晶形式形成,沿其边界形成Al3Ti、Al12Mn2Cu相和Alα+СuАl2共晶的精细颗粒网络。随着冷却速率的增加,枝晶的分支和细分化共晶的体积分数增加,在所研究的整个冷却速率范围内保持相的协同生长。铝固溶体的树枝状参数值随着其晶体形状因子几乎不变而有规律地减小,几乎达到Vcool。≈105°C/s为1.45至3.15。未发现宏观晶粒尺寸的变化对冷却速率的类似依赖性。在≥120°C/s的冷却速率下记录到其异常生长,在该冷却速率下,宏观晶粒尺寸与以0.4°C/s冷却的合金相当。在这项工作中,这种差异是从原子核和晶体生长理论的角度来解释的。关键词:冷却速率,微观结构,AM4.5Kd(VAL10),组织形成,大晶粒尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the cooling rate on the structure formation of the AM4.5kd (VAL10) alloy
High-strength cast aluminum alloy AM4.5Kd (VAL10) belongs to the Al-Cu system and due to the combination of a high level of physical, mechanical and operational properties, is widely used in high-tech industries and technology: aviation, space, shipbuilding, transport. Products from the alloy AM4.5Kd (VAL10) are obtained by all known methods of casting (in sand molds, in a chill mold, under pressure), differing in cooling rates. This has a significant effect on the structure and properties of the alloy, not only in the as-cast, but also in the heat-treated state, which determines the relevance of scientific work in this direction. The article presents the results of a study of the microstructure of the AM4.5Kd (VAL10) alloy with a change in its cooling rate during the curing process (Vcool.) from 0.4 °C/s to ≥ 105 °C/s. The alloy was melted, refined and, at a temperature of 750°C, poured into molds with different heat sinks. It is shown that an increase in the cooling rate during the hardening process leads to a decrease in the size of structural components, in particular, aluminum (Alα) solid solution crystals and to an increase in their microhardness. At a cooling rate of 0.4 °C/s, corresponding to solidification in a sandy form, primary Alα crystals are formed in the form of coarsened dendrites with an average size slightly larger than 800 μm, along the boundaries of which a fine network of particles of Al3Ti, Al12Mn2Cu phases and Alα+СuАl2 eutectics is formed. With an increase in the cooling rate, the branching of the dendrites and the volume fraction of the finely differentiated eutectic increase, the cooperative growth of phases in which is maintained throughout the entire range of cooling rates studied. The value of the dendritic parameter of the solid solution of aluminum regularly decreases with a practically unchanged shape factor of its crystals, which is almost up to Vcool. ≈ 105 °C/s is from 1.45 to 3.15. A similar dependence of the change in the macrograin size on the cooling rate was not found. Its anomalous growth was recorded at a cooling rate of ≥ 120 °C/s, at which the macrograin size is commensurate with the alloy cooled at a rate of 0.4 °C/s. In the work, such a discrepancy is explained from the standpoint of the theory of the nucleus and growth of crystals. Keywords: cooling rate, microstructure, AM4.5Kd (VAL10), structure formation, macrograin size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信