基于圆锥曲率维数条件的图上的全局Poincaré不等式

Pub Date : 2018-02-16 DOI:10.1515/agms-2018-0002
Sajjad Lakzian, Zachary Mcguirk
{"title":"基于圆锥曲率维数条件的图上的全局Poincaré不等式","authors":"Sajjad Lakzian, Zachary Mcguirk","doi":"10.1515/agms-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0002","citationCount":"6","resultStr":"{\"title\":\"A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition\",\"authors\":\"Sajjad Lakzian, Zachary Mcguirk\",\"doi\":\"10.1515/agms-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2018-0002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要引入并研究了有限图的圆锥曲率维条件CCD(K, N)。我们证明了CCD(K, N)为底层图满足尖锐全局poincarcarve不等式提供了充分必要条件,该不等式转化为这些图的第一特征值的尖锐下界。圆锥曲率维数分析的另一个应用是找到完全图曲率的一个尖锐估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition
Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信