{"title":"基于圆锥曲率维数条件的图上的全局Poincaré不等式","authors":"Sajjad Lakzian, Zachary Mcguirk","doi":"10.1515/agms-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0002","citationCount":"6","resultStr":"{\"title\":\"A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition\",\"authors\":\"Sajjad Lakzian, Zachary Mcguirk\",\"doi\":\"10.1515/agms-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2018-0002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition
Abstract We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs