有理映射半群的适应性和最大熵的测度[j]

Pub Date : 2021-09-23 DOI:10.1142/s0218196723500492
P. Makienko, Carlos Cabrera
{"title":"有理映射半群的适应性和最大熵的测度[j]","authors":"P. Makienko, Carlos Cabrera","doi":"10.1142/s0218196723500492","DOIUrl":null,"url":null,"abstract":"We compare dynamical and algebraic properties of semigroups of rational maps. In particular, we show a version of the Day-von Neumann's conjecture and give a partial positive answer to\"Sushkievich's problem\"for semigroups of rational maps. We also show the relation of these conjectures with Furstenberg's $\\times 2 \\times 3$ problem and prove a coarse version of Furstenberg's problem for semigroups of non-exceptional polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On amenability and measure of maximal entropy for semigroups of rational maps: II\",\"authors\":\"P. Makienko, Carlos Cabrera\",\"doi\":\"10.1142/s0218196723500492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare dynamical and algebraic properties of semigroups of rational maps. In particular, we show a version of the Day-von Neumann's conjecture and give a partial positive answer to\\\"Sushkievich's problem\\\"for semigroups of rational maps. We also show the relation of these conjectures with Furstenberg's $\\\\times 2 \\\\times 3$ problem and prove a coarse version of Furstenberg's problem for semigroups of non-exceptional polynomials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196723500492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

比较了有理映射半群的动力学性质和代数性质。特别地,我们给出了Day-von Neumann猜想的一个版本,并给出了有理映射半群的“Sushkievich问题”的部分正答案。我们还证明了这些猜想与Furstenberg的$\ × 2 \ × 3$问题的关系,并证明了非例外多项式半群的Furstenberg问题的一个粗糙版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On amenability and measure of maximal entropy for semigroups of rational maps: II
We compare dynamical and algebraic properties of semigroups of rational maps. In particular, we show a version of the Day-von Neumann's conjecture and give a partial positive answer to"Sushkievich's problem"for semigroups of rational maps. We also show the relation of these conjectures with Furstenberg's $\times 2 \times 3$ problem and prove a coarse version of Furstenberg's problem for semigroups of non-exceptional polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信