{"title":"共生甲藻Zooxanthella(Brandtodinium)营养菌的半乳糖脂质、甜菜碱脂质和甘油三酯相关脂肪酸的组成:对其多胱氨酸放射虫宿主可用的多不饱和脂肪酸的一瞥","authors":"Jori E. Graeff, Jeffrey D. Leblond","doi":"10.1111/pre.12530","DOIUrl":null,"url":null,"abstract":"Zooxanthella nutricula is a photosynthetic dinoflagellate symbiont of polycystine radiolarians. As such, it is hypothesized to provide fixed organic carbon, including in the form of acylglycerolipids and sterols, to its non‐photosynthetic host. We have previously characterized the sterols of Z. nutricula that may be transferred to its host and, in the present study, have turned our attention to three classes of fatty acid‐containing lipids, chloroplast‐associated galactolipids, betaine lipids, which are non‐phosphorylated phospholipid analogs present in many eukaryotes, and triglycerides. Zooxanthella nutricula was observed using positive‐ion electrospray/mass spectrometry (ESI/MS) and ESI/MS/MS to produce the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively) enriched in octadecapentaenoic (18:5(n‐3)) and octadecatetraenoic (18:4(n‐3)) acid to place it within a group of peridinin‐containing dinoflagellates in a C18/C18 (sn‐1/sn‐2 fatty acid regiochemistry) cluster, as opposed to another cluster with C20/C18 MGDG and DGDG, where the C20 fatty acid is eicosapentaenoic acid (20:5(n‐3)) and the C18 fatty acid is either 18:5(n‐3) or 18:4(n‐3). Zooxanthella nutricula was also observed to produce 38:10 (total number of fatty acid carbons:total number of double bonds), 38:6, and 44:7 diacylglycerylcarboxyhydroxymethylcholine (DGCC) as the sole type of betaine lipid. Although it is more difficult to determine which fatty acids are present in the sn‐1 and sn‐2 positions on the glycerol backbone of DGCC using ESI/MS/MS, gas chromatography/mass spectrometry (GC/MS)‐based examination indicated the putatively DGCC‐associated polyunsaturated fatty acid (PUFA) docosahexaenoic acid (22:6(n‐3)). Coupled with the C18 PUFAs of MGDG and DGDG, and fatty acids associated with triglycerides (also examined via GC/MS), Z. nutricula could serve as a rich source of PUFAs for its radiolarian host. These data demonstrate that Z. nutricula produces a similar set of PUFA‐containing lipids as Symbiodinium microadriaticum, a photosynthetic dinoflagellate symbiont of cnidarians, indicating a metabolic commonality in these phylogenetically discrete dinoflagellate symbionts with unrelated host organisms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition of galactolipids, betaine lipids and triglyceride‐associated fatty acids of the symbiotic dinoflagellate Zooxanthella (Brandtodinium) nutricula: A glimpse into polyunsaturated fatty acids available to its polycystine radiolarian host\",\"authors\":\"Jori E. Graeff, Jeffrey D. Leblond\",\"doi\":\"10.1111/pre.12530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zooxanthella nutricula is a photosynthetic dinoflagellate symbiont of polycystine radiolarians. As such, it is hypothesized to provide fixed organic carbon, including in the form of acylglycerolipids and sterols, to its non‐photosynthetic host. We have previously characterized the sterols of Z. nutricula that may be transferred to its host and, in the present study, have turned our attention to three classes of fatty acid‐containing lipids, chloroplast‐associated galactolipids, betaine lipids, which are non‐phosphorylated phospholipid analogs present in many eukaryotes, and triglycerides. Zooxanthella nutricula was observed using positive‐ion electrospray/mass spectrometry (ESI/MS) and ESI/MS/MS to produce the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively) enriched in octadecapentaenoic (18:5(n‐3)) and octadecatetraenoic (18:4(n‐3)) acid to place it within a group of peridinin‐containing dinoflagellates in a C18/C18 (sn‐1/sn‐2 fatty acid regiochemistry) cluster, as opposed to another cluster with C20/C18 MGDG and DGDG, where the C20 fatty acid is eicosapentaenoic acid (20:5(n‐3)) and the C18 fatty acid is either 18:5(n‐3) or 18:4(n‐3). Zooxanthella nutricula was also observed to produce 38:10 (total number of fatty acid carbons:total number of double bonds), 38:6, and 44:7 diacylglycerylcarboxyhydroxymethylcholine (DGCC) as the sole type of betaine lipid. Although it is more difficult to determine which fatty acids are present in the sn‐1 and sn‐2 positions on the glycerol backbone of DGCC using ESI/MS/MS, gas chromatography/mass spectrometry (GC/MS)‐based examination indicated the putatively DGCC‐associated polyunsaturated fatty acid (PUFA) docosahexaenoic acid (22:6(n‐3)). Coupled with the C18 PUFAs of MGDG and DGDG, and fatty acids associated with triglycerides (also examined via GC/MS), Z. nutricula could serve as a rich source of PUFAs for its radiolarian host. These data demonstrate that Z. nutricula produces a similar set of PUFA‐containing lipids as Symbiodinium microadriaticum, a photosynthetic dinoflagellate symbiont of cnidarians, indicating a metabolic commonality in these phylogenetically discrete dinoflagellate symbionts with unrelated host organisms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/pre.12530\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/pre.12530","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Composition of galactolipids, betaine lipids and triglyceride‐associated fatty acids of the symbiotic dinoflagellate Zooxanthella (Brandtodinium) nutricula: A glimpse into polyunsaturated fatty acids available to its polycystine radiolarian host
Zooxanthella nutricula is a photosynthetic dinoflagellate symbiont of polycystine radiolarians. As such, it is hypothesized to provide fixed organic carbon, including in the form of acylglycerolipids and sterols, to its non‐photosynthetic host. We have previously characterized the sterols of Z. nutricula that may be transferred to its host and, in the present study, have turned our attention to three classes of fatty acid‐containing lipids, chloroplast‐associated galactolipids, betaine lipids, which are non‐phosphorylated phospholipid analogs present in many eukaryotes, and triglycerides. Zooxanthella nutricula was observed using positive‐ion electrospray/mass spectrometry (ESI/MS) and ESI/MS/MS to produce the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively) enriched in octadecapentaenoic (18:5(n‐3)) and octadecatetraenoic (18:4(n‐3)) acid to place it within a group of peridinin‐containing dinoflagellates in a C18/C18 (sn‐1/sn‐2 fatty acid regiochemistry) cluster, as opposed to another cluster with C20/C18 MGDG and DGDG, where the C20 fatty acid is eicosapentaenoic acid (20:5(n‐3)) and the C18 fatty acid is either 18:5(n‐3) or 18:4(n‐3). Zooxanthella nutricula was also observed to produce 38:10 (total number of fatty acid carbons:total number of double bonds), 38:6, and 44:7 diacylglycerylcarboxyhydroxymethylcholine (DGCC) as the sole type of betaine lipid. Although it is more difficult to determine which fatty acids are present in the sn‐1 and sn‐2 positions on the glycerol backbone of DGCC using ESI/MS/MS, gas chromatography/mass spectrometry (GC/MS)‐based examination indicated the putatively DGCC‐associated polyunsaturated fatty acid (PUFA) docosahexaenoic acid (22:6(n‐3)). Coupled with the C18 PUFAs of MGDG and DGDG, and fatty acids associated with triglycerides (also examined via GC/MS), Z. nutricula could serve as a rich source of PUFAs for its radiolarian host. These data demonstrate that Z. nutricula produces a similar set of PUFA‐containing lipids as Symbiodinium microadriaticum, a photosynthetic dinoflagellate symbiont of cnidarians, indicating a metabolic commonality in these phylogenetically discrete dinoflagellate symbionts with unrelated host organisms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.