微机械压电兰姆波谐振器综述

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianzheng Lu, Hao Ren
{"title":"微机械压电兰姆波谐振器综述","authors":"Xianzheng Lu, Hao Ren","doi":"10.1088/1361-6439/acf587","DOIUrl":null,"url":null,"abstract":"With the development of next-generation wireless communication and sensing technologies, there is an increasing demand for high-performance and miniaturized resonators. Micromachined piezoelectric Lamb wave resonators are becoming promising candidates because of their multiple vibration modes, lithographically defined frequencies, and small footprint. In the past two decades, micromachined piezoelectric Lamb wave resonators based on various piezoelectric materials and structures have achieved considerable progress in performance and applications. This review focuses on the state-of-the-art Lamb wave resonators based on aluminum nitride (AlN), aluminum scandium nitride (Al x Sc1−x N), and lithium niobate (LiNbO3), as well as their applications and further developments. The promises and challenges of micromachined piezoelectric Lamb wave resonators are also discussed. It is promising for micromachined piezoelectric Lamb wave resonators to achieve higher resonant frequencies and performance through advanced fabrication technologies and new structures, the integration of multifrequency devices with radio frequency (RF) electronics as well as new applications through utilizing nonlinearity and spurious modes. However, several challenges, including degenerated electrical and thermal properties of nanometer-scale electrodes, accurate control of film thickness, high thin film stress, and a trade-off between electromechanical coupling efficiencies and resonant frequencies, may limit the commercialization of micromachined piezoelectric Lamb wave resonators and thus need further investigation. Potential mitigations to these challenges are also discussed in detail in this review. Through further painstaking research and development, micromachined piezoelectric Lamb wave resonators may become one of the strongest candidates in the commercial market of RF and sensing applications.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Micromachined piezoelectric Lamb wave resonators: a review\",\"authors\":\"Xianzheng Lu, Hao Ren\",\"doi\":\"10.1088/1361-6439/acf587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of next-generation wireless communication and sensing technologies, there is an increasing demand for high-performance and miniaturized resonators. Micromachined piezoelectric Lamb wave resonators are becoming promising candidates because of their multiple vibration modes, lithographically defined frequencies, and small footprint. In the past two decades, micromachined piezoelectric Lamb wave resonators based on various piezoelectric materials and structures have achieved considerable progress in performance and applications. This review focuses on the state-of-the-art Lamb wave resonators based on aluminum nitride (AlN), aluminum scandium nitride (Al x Sc1−x N), and lithium niobate (LiNbO3), as well as their applications and further developments. The promises and challenges of micromachined piezoelectric Lamb wave resonators are also discussed. It is promising for micromachined piezoelectric Lamb wave resonators to achieve higher resonant frequencies and performance through advanced fabrication technologies and new structures, the integration of multifrequency devices with radio frequency (RF) electronics as well as new applications through utilizing nonlinearity and spurious modes. However, several challenges, including degenerated electrical and thermal properties of nanometer-scale electrodes, accurate control of film thickness, high thin film stress, and a trade-off between electromechanical coupling efficiencies and resonant frequencies, may limit the commercialization of micromachined piezoelectric Lamb wave resonators and thus need further investigation. Potential mitigations to these challenges are also discussed in detail in this review. Through further painstaking research and development, micromachined piezoelectric Lamb wave resonators may become one of the strongest candidates in the commercial market of RF and sensing applications.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf587\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf587","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

随着下一代无线通信和传感技术的发展,对高性能、小型化谐振器的需求日益增长。微机械压电Lamb波谐振器因其多种振动模式、光刻定义频率和占地面积小而成为有希望的候选器件。近二十年来,基于各种压电材料和结构的微机械压电Lamb波谐振器在性能和应用方面取得了长足的进步。本文综述了基于氮化铝(AlN),氮化铝钪(Al x Sc1−x N)和铌酸锂(LiNbO3)的最先进的Lamb波谐振器,以及它们的应用和进一步发展。讨论了微机械压电Lamb波谐振器的发展前景和面临的挑战。通过先进的制造技术和新的结构,多频器件与射频(RF)电子学的集成以及利用非线性和杂散模式的新应用,微机械压电Lamb波谐振器有望实现更高的谐振频率和性能。然而,一些挑战,包括纳米尺度电极的退化电学和热性能,薄膜厚度的精确控制,高薄膜应力,以及机电耦合效率和谐振频率之间的权衡,可能会限制微机械压电Lamb波谐振器的商业化,因此需要进一步研究。本文还详细讨论了应对这些挑战的潜在缓解措施。通过进一步的艰苦研究和开发,微机械压电Lamb波谐振器可能成为射频和传感应用的商业市场上最强大的候选者之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micromachined piezoelectric Lamb wave resonators: a review
With the development of next-generation wireless communication and sensing technologies, there is an increasing demand for high-performance and miniaturized resonators. Micromachined piezoelectric Lamb wave resonators are becoming promising candidates because of their multiple vibration modes, lithographically defined frequencies, and small footprint. In the past two decades, micromachined piezoelectric Lamb wave resonators based on various piezoelectric materials and structures have achieved considerable progress in performance and applications. This review focuses on the state-of-the-art Lamb wave resonators based on aluminum nitride (AlN), aluminum scandium nitride (Al x Sc1−x N), and lithium niobate (LiNbO3), as well as their applications and further developments. The promises and challenges of micromachined piezoelectric Lamb wave resonators are also discussed. It is promising for micromachined piezoelectric Lamb wave resonators to achieve higher resonant frequencies and performance through advanced fabrication technologies and new structures, the integration of multifrequency devices with radio frequency (RF) electronics as well as new applications through utilizing nonlinearity and spurious modes. However, several challenges, including degenerated electrical and thermal properties of nanometer-scale electrodes, accurate control of film thickness, high thin film stress, and a trade-off between electromechanical coupling efficiencies and resonant frequencies, may limit the commercialization of micromachined piezoelectric Lamb wave resonators and thus need further investigation. Potential mitigations to these challenges are also discussed in detail in this review. Through further painstaking research and development, micromachined piezoelectric Lamb wave resonators may become one of the strongest candidates in the commercial market of RF and sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信