鸡轴骨骼区域特异性肋骨形成的体外模型:体和侧板细胞间的相互作用

IF 2.6 Q2 Medicine
Kaoru Matsutani , Koji Ikegami , Hirohiko Aoyama
{"title":"鸡轴骨骼区域特异性肋骨形成的体外模型:体和侧板细胞间的相互作用","authors":"Kaoru Matsutani ,&nbsp;Koji Ikegami ,&nbsp;Hirohiko Aoyama","doi":"10.1016/j.mod.2019.103568","DOIUrl":null,"url":null,"abstract":"<div><p>The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior–posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell–cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"159 ","pages":"Article 103568"},"PeriodicalIF":2.6000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2019.103568","citationCount":"1","resultStr":"{\"title\":\"An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells\",\"authors\":\"Kaoru Matsutani ,&nbsp;Koji Ikegami ,&nbsp;Hirohiko Aoyama\",\"doi\":\"10.1016/j.mod.2019.103568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior–posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell–cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"159 \",\"pages\":\"Article 103568\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2019.103568\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477319301248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477319301248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

轴骨根据其形态特征被划分为不同的区域。特别是在鸟类和哺乳动物中,肋骨只存在于胸部区域。轴向骨架由一系列体母体形成。在轴骨的胸椎区域,体体的后代一致地渗透到体中胚层形成肋骨。在胸廓以外的区域,有些虫的后代不穿透体侧板中胚层。我们采用活细胞延时成像技术,研究了体质体细胞在体外嗜细胞狭窄路径上与前后轴不同区域获得的体侧板中胚层接触后迁移的差异。我们发现,与胸椎体侧板中胚层接触后,胸椎体细胞继续迁移,而与腰椎体侧板中胚层接触后,胸椎体细胞停止迁移。这表明细胞间相互作用是调节某些细胞迁移的重要指导线索。我们推测,胸椎体侧板中胚层表现出区域特异性能力,允许体体细胞穿透,而腰骶椎体侧板中胚层则通过接触抑制运动来排斥体体细胞。体细胞侧板中胚层对体体细胞行为的差异可能证实了轴骨不同区域之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells

The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior–posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell–cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanisms of Development
Mechanisms of Development 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
12.4 weeks
期刊介绍: Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology. Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology. Areas of particular interest include: Cell and tissue morphogenesis Cell adhesion and migration Cell shape and polarity Biomechanics Theoretical modelling of cell and developmental biology Quantitative biology Stem cell biology Cell differentiation Cell proliferation and cell death Evo-Devo Membrane traffic Metabolic regulation Organ and organoid development Regeneration Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信