{"title":"路径和循环的全图的支配着色","authors":"M. Shukla, Foram Chandarana","doi":"10.21595/mme.2023.23228","DOIUrl":null,"url":null,"abstract":"<jats:p>A dominator coloring of a graph <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> is a proper coloring in which every vertex of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> dominates every vertex of at least one-color class possibly its own class and each color class is dominated by at least one vertex. The minimum number of colors required for dominator coloring of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> is called the dominator chromatic number of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>G</mml:mi></mml:math> and is denoted by <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. In this paper, we have established the relation between dominator chromatic number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>, chromatic number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>χ</mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and domination number <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi>γ</mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. We have investigated results on total graphs of path and cycle with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mfenced separators=\"|\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mo>-</mml:mo><mml:mi mathvariant=\"normal\"> </mml:mi><mml:mn>1</mml:mn></mml:math>. </jats:p>","PeriodicalId":32958,"journal":{"name":"Mathematical Models in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominator Coloring of Total Graph of Path and Cycle\",\"authors\":\"M. Shukla, Foram Chandarana\",\"doi\":\"10.21595/mme.2023.23228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>A dominator coloring of a graph <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>G</mml:mi></mml:math> is a proper coloring in which every vertex of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>G</mml:mi></mml:math> dominates every vertex of at least one-color class possibly its own class and each color class is dominated by at least one vertex. The minimum number of colors required for dominator coloring of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>G</mml:mi></mml:math> is called the dominator chromatic number of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>G</mml:mi></mml:math> and is denoted by <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. In this paper, we have established the relation between dominator chromatic number <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>, chromatic number <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>χ</mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and domination number <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi>γ</mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math>. We have investigated results on total graphs of path and cycle with <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mi>χ</mml:mi><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mi>γ</mml:mi><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mfenced separators=\\\"|\\\"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mo>-</mml:mo><mml:mi mathvariant=\\\"normal\\\"> </mml:mi><mml:mn>1</mml:mn></mml:math>. </jats:p>\",\"PeriodicalId\":32958,\"journal\":{\"name\":\"Mathematical Models in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/mme.2023.23228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/mme.2023.23228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Dominator Coloring of Total Graph of Path and Cycle
A dominator coloring of a graph G is a proper coloring in which every vertex of G dominates every vertex of at least one-color class possibly its own class and each color class is dominated by at least one vertex. The minimum number of colors required for dominator coloring of G is called the dominator chromatic number of G and is denoted by χdG. In this paper, we have established the relation between dominator chromatic number χdG, chromatic number χG and domination number γG. We have investigated results on total graphs of path and cycle with χdG=χG+γG and χdG=χG+γG-1.