{"title":"线偏振光激发超表面微粒子的捕获和旋转","authors":"Yi Yang, Siyuan Huang","doi":"10.1177/18479804211015107","DOIUrl":null,"url":null,"abstract":"We numerically demonstrate trapping and rotation of particles using a metasurface formed by arranging nanocavities as a right-handed Archimedes’ spiral. Excited by a 90° linearly polarized beam, a focused surface plasmon polariton (SPP) field is formed at the center of the spiral, and the particle can be trapped by the field. While excited by −45° linearly polarized beams, a vortex SPP field carrying orbital angular momentum is formed, and the particles can be trapped and rotated in the clockwise direction at the vortex field.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trapping and rotation of microparticles using a metasurface exciting by linearly polarized beam\",\"authors\":\"Yi Yang, Siyuan Huang\",\"doi\":\"10.1177/18479804211015107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We numerically demonstrate trapping and rotation of particles using a metasurface formed by arranging nanocavities as a right-handed Archimedes’ spiral. Excited by a 90° linearly polarized beam, a focused surface plasmon polariton (SPP) field is formed at the center of the spiral, and the particle can be trapped by the field. While excited by −45° linearly polarized beams, a vortex SPP field carrying orbital angular momentum is formed, and the particles can be trapped and rotated in the clockwise direction at the vortex field.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/18479804211015107\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804211015107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Trapping and rotation of microparticles using a metasurface exciting by linearly polarized beam
We numerically demonstrate trapping and rotation of particles using a metasurface formed by arranging nanocavities as a right-handed Archimedes’ spiral. Excited by a 90° linearly polarized beam, a focused surface plasmon polariton (SPP) field is formed at the center of the spiral, and the particle can be trapped by the field. While excited by −45° linearly polarized beams, a vortex SPP field carrying orbital angular momentum is formed, and the particles can be trapped and rotated in the clockwise direction at the vortex field.
期刊介绍:
Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology