{"title":"模的湮灭子模的交图补的可分辨性","authors":"S. Payrovi, S. Pejman, S. Babaei","doi":"10.22124/JART.2020.15786.1192","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring and $M$ be an $R$-module. The intersection graph of annihilatorsubmodules of $M$, denoted by ${GA(M)}$, is a simple undirected graph whose vertices are the classes of elements of $Z(M)setminus {rm Ann}_R(M)$ and two distinct classes $[a]$ and$[b]$ are adjacent if and only if ${rm Ann}_M(a)cap {rm Ann}_M(b)not=0$. In this paper, we studythe diameter and girth of $overline{GA(M)}$. Furthermore, we calculate the domination number,metric dimension, adjacency metric dimension and local metric dimension of $overline{GA(M)}$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"8 1","pages":"27-37"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resolvability in complement of the intersection graph of annihilator submodules of a module\",\"authors\":\"S. Payrovi, S. Pejman, S. Babaei\",\"doi\":\"10.22124/JART.2020.15786.1192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring and $M$ be an $R$-module. The intersection graph of annihilatorsubmodules of $M$, denoted by ${GA(M)}$, is a simple undirected graph whose vertices are the classes of elements of $Z(M)setminus {rm Ann}_R(M)$ and two distinct classes $[a]$ and$[b]$ are adjacent if and only if ${rm Ann}_M(a)cap {rm Ann}_M(b)not=0$. In this paper, we studythe diameter and girth of $overline{GA(M)}$. Furthermore, we calculate the domination number,metric dimension, adjacency metric dimension and local metric dimension of $overline{GA(M)}$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"8 1\",\"pages\":\"27-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2020.15786.1192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2020.15786.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Resolvability in complement of the intersection graph of annihilator submodules of a module
Let $R$ be a commutative ring and $M$ be an $R$-module. The intersection graph of annihilatorsubmodules of $M$, denoted by ${GA(M)}$, is a simple undirected graph whose vertices are the classes of elements of $Z(M)setminus {rm Ann}_R(M)$ and two distinct classes $[a]$ and$[b]$ are adjacent if and only if ${rm Ann}_M(a)cap {rm Ann}_M(b)not=0$. In this paper, we studythe diameter and girth of $overline{GA(M)}$. Furthermore, we calculate the domination number,metric dimension, adjacency metric dimension and local metric dimension of $overline{GA(M)}$.